Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi thử vào môn Toán năm 2022 2023 trường THCS Lệ Chi Hà Nội

Nội dung Đề thi thử vào môn Toán năm 2022 2023 trường THCS Lệ Chi Hà Nội Bản PDF - Nội dung bài viết Đề thi thử vào môn Toán năm 2022-2023 trường THCS Lệ Chi Hà Nội Đề thi thử vào môn Toán năm 2022-2023 trường THCS Lệ Chi Hà Nội Xin chào quý thầy cô và các em học sinh lớp 9! Hôm nay, Sytu xin giới thiệu đến các bạn đề thi thử tuyển sinh vào lớp 10 THPT môn Toán năm học 2022-2023 của trường THCS Lệ Chi, huyện Gia Lâm, thành phố Hà Nội. Kỳ thi sẽ diễn ra vào ngày 16 tháng 04 năm 2022. Hãy cùng chúng tôi tìm hiểu chi tiết về đề thi này. Trích dẫn một số câu hỏi từ đề thi: 1. Giải bài toán sau bằng cách lập phương trình hoặc hệ phương trình: Theo kế hoạch hai tổ được giao sản xuất 500 thiết bị y tế. Thực tế khi sản xuất tổ 1 đã làm vượt mức 10% và tổ 2 đã làm vượt mức 15% nên cả hai tổ đã làm được 560 thiết bị tế. Hỏi theo kế hoạch mỗi tổ được giao sản xuất bao nhiêu thiết bị y tế. 2. Một người thợ dùng một đoạn dây thép dài 50cm để uốn và hàn thành một đường tròn (phần nối hàn không đáng kể). Hãy tính đường kính của đường tròn đó. 3. Hình học: Cho đường tròn (O) đường kính AB. M là điểm trên cung AB sao cho MA < MB. C là một điểm thuộc đoạn OB (C khác O và B). Đường thẳng vuông góc với AB tại C cắt MB tại H và cắt tia AM tại điểm E. a) Chứng minh tứ giác AMHC nội tiếp. b) Chứng minh AM.AE = AB.AC. c) AH cắt BE tại điểm K. Từ E kẻ các tiếp tuyến EP và EQ với đường tròn (O) với P và Q là các tiếp điểm. Chứng minh đường tròn ngoại tiếp tam giác CMK đi qua điểm O và ba điểm P, H, Q thẳng hàng. Đây là một số câu hỏi thú vị và phong phú từ đề thi thử môn Toán trường THCS Lệ Chi. Hãy cùng nhau ôn tập và chuẩn bị kỹ càng cho kỳ thi sắp tới nhé!

Nguồn: sytu.vn

Đọc Sách

Đề tuyển sinh lớp 10 môn Toán năm học 2020 - 2021 sở GDĐT TP HCM
Sáng thứ Sáu ngày 17 tháng 07 năm 2020, sở Giáo dục và Đào tạo thành phố Hồ Chí Minh tổ chức kỳ thi tuyển sinh vào lớp 10 môn Toán năm học 2020 – 2021. Đề tuyển sinh lớp 10 môn Toán năm học 2020 – 2021 sở GD&ĐT TP HCM gồm có 02 trang với 08 bài toán dạng tự luận, thời gian học sinh làm bài thi là 120 phút, đề thi có đáp án và lời giải chi tiết. Trích dẫn đề tuyển sinh lớp 10 môn Toán năm học 2020 – 2021 sở GD&ĐT TP HCM : + Quy tắc sau đây cho ta biết CAN, CHI của năm X nào đó. Để xác định CAN, ta tìm số dư r trong phép chia X cho 10 và tra vào bảng 1. Để xác định CHI, ta tìm số dư s trong phép chia X cho 12 và tra vào bảng 2. Ví dụ : năm 2020 có CAN là Canh, có CHI là Tí. a) Em hãy sử dụng quy tắc trên để xác định CAN, CHI của năm 2005. b) Bạn Hằng nhớ rằng Nguyễn Huệ lên ngôi hoàng đế, hiệu là Quang Trung vào năm Mậu Thân nhưng không nhớ rõ đó là năm bao nhiêu mà chỉ nhớ là sự kiện trên xảy ra vào cuối thể kỉ 18. Em hãy giúp Hằng xác định chính xác năm đó là năm bao nhiêu. + Cước điện thoại y (nghìn đồng) là số tiền mà người sử dụng điện thoại cần trả hàng tháng, nó phụ thuộc và lượng thời gian gọi x (phút) của người đó trong tháng. Mối liên hệ giữa hai đại lượng này là một hàm số bậc nhất y = ax + b. Hãy tìm a, b biết rằng nhà bạn Nam trong tháng 5 đã gọi 100 phút với số tiền là 40 nghìn đồng và trong tháng 6 đã gọi 40 phút với số tiền là 28 nghìn đồng. [ads] + Theo quy định của cửa hàng xe máy, để hoàn thành chi tiêu trong một tháng, mỗi nhân viên phải bán được trung binh một chiếc xe máy trong một ngày. Nhân viên nào hoàn thành chi tiêu trong một tháng thì nhận được lưong cơ bản là 8000000 đồng. Nếu trong tháng nhân viên nào bán vượt chỉ tiêu thì được thương thêm $8%$ tiền lời của số xe máy bán vượt chỉ tiêu đó. Trong tháng 5 (có 31 ngày), anh Thành nhận được số tiền là 9800000 đồng (bao gồm cả lương cơ bản và tiền thưởng thêm cúa tháng 6 ). Hỏi anh Thành đã bán được bao nhiêu chiếc xe máy trong tháng 5, biết rằng mỗi xe máy bán ra thì cửa hàng thu lời được 2 500 000 đồng.
Đề tuyển sinh lớp 10 môn Toán (chuyên) năm 2020 - 2021 trường THPT chuyên ĐHSP Hà Nội
Thứ Tư ngày 15 tháng 07 năm 2020, trường Trung học Phổ thông chuyên Đại học Sư Phạm Hà Nội tổ chức kỳ thi tuyển sinh vào lớp 10 môn Toán năm học 2020 – 2021. Đề tuyển sinh lớp 10 môn Toán (chuyên) năm 2020 – 2021 trường THPT chuyên ĐHSP Hà Nội dành cho thí sinh thi vào các lớp chuyên Toán, chuyên Tin học; đề gồm có 01 trang với 05 bài toán dạng tự luận, thời gian làm bài thi là 150 phút. Trích dẫn đề tuyển sinh lớp 10 môn Toán (chuyên) năm 2020 – 2021 trường THPT chuyên ĐHSP Hà Nội : + Xét phương trình bậc hai: ax^2 + bx + c = 0 (1), trong đó a, b, c là các số nguyên dương. Biết rằng các điều kiện sau được thỏa mãn: phương trình (1) có nghiệm; số a2020b chia hết cho 12; số c^3 + 3 chia hết cho c + 3. Hãy tìm giá trị lớn nhất của tổng a + b + c. + Cho tam giác nhọn ABC nội tiếp đường tròn (O) có AB > BC. Một đường tròn đi qua hai đỉnh A, C của tam giác ABC lần lượt cắt các cạnh AB, BC tại hai điểm K, N (K, N khác các đỉnh của tam giác ABC). Giả sử đường tròn (O) và đường tròn ngoại tiếp tam giác BKN cắt nhau tại giao điểm thứ hai là M (M khác B). Chứng minh rằng: a) Ba đường thẳng BM, KN, AC đồng quy tại điểm P. b) Tứ giác MNCP là nội tiếp. c) BM^2 – PM^2 = BK.BA – PC.PA. [ads] + Cho hai số A, B cùng có 2020 chữ số. Biết rằng: số A có đúng 1945 chữ số khác 0, bao gồm 1930 chữ số ngoài cùng về bên trái và 15 chữ số ngoài cùng về bên phải, số B có đúng 1954 chữ số khác 0, bao gồm 1930 chữ số ngoài cùng về bên trái và 24 chữ số ngoài cùng về bên phải. Chứng minh rằng ƯCLN(A;B) là một số có không quá 1954 chữ số.
Đề tuyển sinh lớp 10 môn Toán năm 2020 - 2021 trường THPT chuyên ĐHSP Hà Nội
Thứ Ba ngày 14 tháng 07 năm 2020, trường Trung học Phổ thông chuyên Đại học Sư Phạm Hà Nội tổ chức kỳ thi tuyển sinh vào lớp 10 môn Toán năm học 2020 – 2021. Đề tuyển sinh lớp 10 môn Toán năm 2020 – 2021 trường THPT chuyên ĐHSP Hà Nội dành cho mọi thí sinh tham dự kỳ thi vào trường chuyên, đề gồm có 02 trang với 05 bài toán dạng tự luận, thời gian làm bài thi là 120 phút. Trích dẫn đề tuyển sinh lớp 10 môn Toán năm 2020 – 2021 trường THPT chuyên ĐHSP Hà Nội : + Hai ô tô cùng khởi hành một lúc trên quãng đường từ A đến B dài 120 km. Vì mỗi giờ ô tô thứ nhất chạy nhanh hơn ô tô thứ hai là 10 km nên đến B trước ô tô thứ hai là 0,4 giờ. Tính vận tốc mỗi ô tô, biết rằng vận tốc của mỗi ô tô là không đổi trên cả quãng đường AB. + Bác An muốn làm một cửa sổ khuôn gỗ, phía trên có dạng nửa hình tròn, phía dưới có dạng hình chữ nhật. Biết rằng đường kính của nửa hình tròn cũng là cạnh phía trên của hình chữ nhật và tổng độ dài các khuôn gỗ (các đường in đậm trong hình vẽ bên, bỏ qua độ rộng của khuôn gỗ) là 8m. Em hãy giúp bác An tính độ dài các cạnh của hình chữ nhật để cửa sổ có diện tích lớn nhất. [ads] + Cho đường tròn (O) và một điểm A nằm ngoài đường tròn. Kẻ tiếp tuyến AB với đường tròn (O) (B là tiếp điểm) và đường kính BC. Trên đoạn thẳng có lấy điểm I (I khác C và O). Đường thẳng IA cắt (O) tại hai điểm D và E (D nằm giữa A và E). Gọi H là trung điểm của đoạn thẳng DE. a) Chứng minh AB.BE = BD.AE. b) Đường thẳng d đi qua điểm E song song với AO, d cắt BC tại điểm K. Chứng minh HK // CD. c) Tia CD cắt AC tại điểm P, tia EO cắt BP tại điểm F. Chứng minh tứ giác BECF là hình chữ nhật.
Đề tuyển sinh lớp 10 THPT môn Toán năm 2020 - 2021 sở GDKHCN Bạc Liêu
Sáng thứ Ba ngày 14 tháng 07 năm 2020, sở Giáo dục, Khoa học và Công nghệ tỉnh Bạc Liêu tổ chức kỳ thi tuyển sinh vào lớp 10 hệ Trung học Phổ thông môn Toán năm học 2020 – 2021. Đề tuyển sinh lớp 10 THPT môn Toán năm 2020 – 2021 sở GDKHCN Bạc Liêu dành cho thí sinh thi vào các lớp không chuyên, đề gồm có 01 trang với 04 bài toán tự luận, thời gian làm bài thi là 120 phút. Trích dẫn đề tuyển sinh lớp 10 THPT môn Toán năm 2020 – 2021 sở GDKHCN Bạc Liêu : + Cho parabol (P): y = 2x^2 và đường thẳng (d): y = 3x + b. Xác định giá trị của b bằng phép tính để đường thẳng (d) tiếp xúc với parabol (P). + Cho phương trình: x^2 – (m – 1)x – m = 0 (1) (với m là tham số). a) Giải phương trình (1) khi m = 4. b) Chứng minh phương trình (1) luôn có nghiệm với mọi giá trị của m. c) Xác định các giá trị của m để phương trình (1) có hai nghiệm phân biệt x1, x2 thỏa mãn: x1(3 + x1) + x2(3 + x2) = -4. [ads] + Cho đường tròn tâm O đường kính AB = 2R. Gọi I là trung điểm của đoạn thẳng OA, E là điểm thay đổi trên đường tròn (O) sao cho E không trùng với A và B. Dựng đường thẳng d1 và d2 lần lượt là các tiếp tuyến của đường tròn (O) tại A và B. Gọi d là đường thẳng qua E và vuông góc với El . Đường thẳng d cắt d1 và d2 lần lượt tại M và N. a) Chứng minh tứ giác AMEI nội tiếp. b) Chứng minh tam giác IAE đồng dạng với NBE. Từ đó chứng minh IB.NE = 3IE.NB. c) Khi điểm E thay đổi, chứng minh tam giác MN vuông tại I và tìm giá trị nhỏ nhất của diện tích tam giác MNI theo R.