Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề học sinh giỏi tỉnh Toán 11 năm 2023 - 2024 sở GDĐT Hà Tĩnh

giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 11 đề thi chọn học sinh giỏi cấp tỉnh môn Toán 11 THPT năm học 2023 – 2024 sở Giáo dục và Đào tạo tỉnh Hà Tĩnh; đề thi có đáp án và lời giải chi tiết. Trích dẫn Đề học sinh giỏi tỉnh Toán 11 năm 2023 – 2024 sở GD&ĐT Hà Tĩnh : + Trong chiến dịch Điện Biên Phủ năm 1954, xe đạp thồ là phương tiện vận chuyển góp phần không nhỏ cho thắng lợi của chiến dịch. Xe đạp thồ của một anh dân công hoả tuyến sau khi gia cố thì đường kính của bánh xe bằng 70 cm. Trên một đoạn đường, anh để ý rằng có một vết phồng ở bánh xe cứ sau 2 giây lại cọ xát vào khung xe. Tính vận tốc của xe trên quãng đường đó. + Vay số tiền P theo thể thức lãi kép theo định kì (lãi kì này tính vào gốc của kì sau) với lãi suất r mỗi kì. Sau n kì, số tiền Pn phải trả (cả vốn lẫn lãi) bằng n (1) n PP r. Một học sinh thấy tờ rơi quảng cáo cho vay không thế chấp của công ty T&T với lãi suất kép “cứ vay 1 triệu đồng thì tiền lãi chỉ ba ngàn đồng mỗi ngày” nên đã vay 1 triệu đồng. Sau 1 tuần, học sinh đó đến trả tiền nhưng thấy tiền lãi ít nên không trả mà vay thêm 10 triệu đồng để mua điện thoại đời mới. Sau 1 năm tính từ ngày vay thêm (bằng 365 ngày), học sinh này đến trả nợ thì mới phát hoảng vì số tiền quá lớn. Tính số tiền học sinh này phải trả lúc đó. + Một đề thi gồm 5 câu hỏi ở dạng thức trắc nghiệm dạng Đúng/Sai. Mỗi câu hỏi có 04 ý, tại mỗi ý học sinh lựa chọn đúng hoặc sai. Cách thức tính điểm như sau: – Học sinh chỉ lựa chọn chính xác 01 ý trong 01 câu hỏi được 0,2 điểm. – Học sinh chỉ lựa chọn chính xác 02 ý trong 01 câu hỏi được 0,5 điểm. – Học sinh chỉ lựa chọn chính xác 03 ý trong 01 câu hỏi được 1 điểm. – Học sinh chỉ lựa chọn chính xác 04 ý trong 01 câu hỏi được 2 điểm. Một học sinh làm bài bằng cách chọn ngẫu nhiên tất cả các ý trả lời. Tính xác suất để học sinh đó được ít nhất 9 điểm.

Nguồn: toanmath.com

Đọc Sách

Đề HSG Toán 11 cấp trường năm 2019 - 2020 trường Nguyễn Đăng Đạo - Bắc Ninh
Nhằm kiểm tra khảo sát chất lượng đội tuyển học sinh giỏi Toán 11, vừa qua, trường THPT Nguyễn Đăng Đạo, tỉnh Bắc Ninh đã tổ chức kỳ thi chọn học sinh giỏi cấp trường môn thi Toán lớp 11 năm học 2019 – 2020. Đề HSG Toán 11 cấp trường năm 2019 – 2020 trường Nguyễn Đăng Đạo – Bắc Ninh gồm có 01 trang với 06 bài toán tự luận, thời gian làm bài 150 phút, đề thi có đáp số và lời giải chi tiết. Trích dẫn đề HSG Toán 11 cấp trường năm 2019 – 2020 trường Nguyễn Đăng Đạo – Bắc Ninh : + Trong mặt phẳng tọa độ Oxy, cho tam giác ABC có A(2;3). Các điểm I (6;6), J(4;5) lần lượt là tâm đường tròn ngoại tiếp và tâm đường tròn nội tiếp tam giác ABC. Tìm tọa độ các đỉnh B và C biết hoành độ điểm B lớn hơn hoành độ điểm C. [ads] + Có hai cái hộp đựng tất cả 15 viên bi, các viên bi chỉ có 2 màu đen và trắng. Lấy ngẫu nhiên từ mỗi hộp 1 viên bi. Biết số bi ở hộp 1 nhiều hơn hộp 2, số bi đen ở hộp 1 nhiều hơn số bi đen ở hộp 2 và xác suất để lấy được 2 viên đen là 5/28. Tính xác suất để lấy được 2 viên trắng. + Cho hình chóp S.ABCD có đáy ABCD là hình chữ nhật, AB = a, AD = b, cạnh bên SA vuông góc với đáy. a) Gọi I, J lần lượt là trung điểm của SB và CD. Biết đường thẳng IJ tạo với mặt phẳng (ABCD) một góc 60 độ. Tính độ dài đoạn thẳng SA. b) (α) là mặt phẳng thay đổi qua AB và cắt các cạnh SC, SD lần lượt tại M và N. Gọi K là giao điểm của hai đường thẳng AN và BM. Chứng minh rằng biểu thức T = AB/MN – BC/SK có giá trị không đổi.
Đề giao lưu HSG tỉnh Toán 11 năm 2019 - 2020 trường Bá Thước - Thanh Hóa
Ngày 28 tháng 12 năm 2019, trường THPT Bá Thước, tỉnh Thanh Hóa tổ chức kỳ thi giao lưu học sinh giỏi cấp tỉnh môn Toán lớp 11 năm học 2019 – 2020, đây là bước chuẩn bị trước khi các em học sinh khối 11 bước vào kỳ thi chọn học sinh giỏi Toán cấp tỉnh do sở Giáo dục và Đào tạo Thanh Hóa tổ chức. Đề giao lưu HSG tỉnh Toán 11 năm 2019 – 2020 trường Bá Thước – Thanh Hóa được biên soạn theo dạng đề tự luận với 05 bài toán, thời gian học sinh làm bài thi là 90 phút, đề thi có lời giải chi tiết. Trích dẫn đề giao lưu HSG tỉnh Toán 11 năm 2019 – 2020 trường Bá Thước – Thanh Hóa : + Cho hình chóp S.ABCD có đáy là hình thoi cạnh 3a, SA = SD = 3a, SB = SC = 3a√3. Gọi M, N lần lượt là trung điểm của các cạnh SA và SD, P là điểm thuộc cạnh AB sao cho AP = 2a. Tính diện tích thiết diện của hình chóp khi cắt bởi mặt phẳng (MNP). [ads] + Cho tứ diện ABCD, G là trọng tâm tam giác BCD và M là điểm di động bên trong tam giác BCD sao cho khi M khác G thì MG không song song với CD. Đường thẳng qua M và song song với GA cắt các mặt phẳng (ABC), (ACD), (ABD) lần lượt tại P, Q, R. Tìm giá trị lớn nhất của tích MP.MQ.MR. + Một hộp đựng 50 chiếc thẻ được đánh số từ 1 đến 50. Chọn ngẫu nhiên từ hộp hai thẻ. Tính xác suất để hiệu bình phương số ghi trên hai thẻ là số chia hết cho 3.
Đề khảo sát HSG Toán 11 lần 1 năm 2019 - 2020 trường Hậu Lộc 4 - Thanh Hóa
Vừa qua, trường THPT Hậu Lộc 4, tỉnh Thanh Hóa đã tổ chức kỳ thi khảo sát chất lượng đội tuyển học sinh giỏi Toán 11 THPT lần thứ nhất năm học 2019 – 2020. Đề khảo sát HSG Toán 11 lần 1 năm 2019 – 2020 trường Hậu Lộc 4 – Thanh Hóa gồm có 05 bài toán dạng tự luận, thời gian làm bài 180 phút, đề thi gồm 01 trang, có lời giải chi tiết và thang chấm điểm. Trích dẫn đề khảo sát HSG Toán 11 lần 1 năm 2019 – 2020 trường Hậu Lộc 4 – Thanh Hóa : + Cho hình chóp S.ABCD có đáy là hình thang, đáy lớn BC = 2a, AD = a, AB = b. Mặt bên (SAD) là tam giác đều. Mặt phẳng (α) qua điểm M trên cạnh AB và song song với các cạnh SA, BC. (α) cắt CD, SC, SB lần lượt tại N, P, Q. Đặt x = AM (0 < x < b). Tính giá trị lớn nhất của diện tích thiết diện tạo bởi (α) và hình chóp S.ABCD. [ads] + Trong mặt phẳng với hệ tọa độ Oxy, cho tam giác ABC cân tại A(-1;3). Gọi D là một điểm trên cạnh AB sao cho AB = 3AD và H là hình chiếu vuông góc của B trên CD. Điểm M(1/2;-3/2) là trung điểm đoạn HC. Xác định tọa độ điểm C biết điểm B nằm trên đường thẳng x + y + 7 = 0. + Trong mặt phẳng với trục toạ độ Oxy cho hình thang cân ABCD (AB // CD). Gọi H, I lần lượt là hình chiếu vuông góc của B trên các đường thẳng AC, CD. Giả sử M, N lần lượt là trung điểm của AD, HI. Viết phương trình đường thẳng AB biết M(1;-2), N(3;4) và đỉnh B nằm trên đường thẳng x + y – 9 = 0, cosABM = 2/√5.
Đề Olympic Toán 11 năm 2019 cụm trường THPT Hà Đông Hoài Đức Hà Nội
giới thiệu đến bạn đọc đề thi Olympic Toán 11 năm học 2018 – 2019 cụm trường THPT Hà Đông – Hoài Đức – Hà Nội, đề gồm 01 trang với 05 bài toán dạng tự luận, thang điểm bài thi là 20 điểm, học sinh có 150 phút để làm bài thi. Trích dẫn đề Olympic Toán 11 năm 2019 cụm trường THPT Hà Đông – Hoài Đức – Hà Nội : + Trong một hộp kín đựng 100 tấm thẻ như nhau được đánh số từ 1 đến 100. Lấy ngẫu nhiên ba tấm thẻ trong hộp. Tính xác suất để lấy được ba tấm thẻ mà ba số ghi trên ba tấm thẻ đó lập thành một cấp số cộng. [ads] + Cho hình hộp ABCD.A’B’C’D’ có tất cả các cạnh bằng nhau. Điểm M di động trên cạnh AB, điểm N di động trên cạnh A’D’ sao cho A’N = 2AM. Gọi (a) là mặt phẳng chứa MN và song song với AC. Dựng thiết diện của hình hộp bởi (a) và chứng minh rằng (a) luôn chứa một đường thẳng cố định. + Cho tứ diện ABCD. Chứng minh rằng: (AB + CD)^2 + (AD + BC)^2 > (AC + BD)?.