Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề học kì 1 (HK1) lớp 10 môn Toán năm 2022 2023 trường Phổ thông Năng khiếu TP HCM

Nội dung Đề học kì 1 (HK1) lớp 10 môn Toán năm 2022 2023 trường Phổ thông Năng khiếu TP HCM Bản PDF Sytu giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 10 đề thi cuối học kì 1 môn Toán lớp 10 năm học 2022 – 2023 trường Phổ thông Năng khiếu (PTNK), Đại học Quốc gia thành phố Hồ Chí Minh; đề thi gồm 02 trang với 05 bài toán dạng tự luận, thời gian học sinh làm bài thi là 90 phút. Trích dẫn Đề học kì 1 Toán lớp 10 năm 2022 – 2023 trường Phổ thông Năng khiếu – TP HCM : + Tháp Bánh Ít là một trong số ít những quần thể kiến trúc, văn hoá Chăm còn sót lại ở Việt Nam, được xây dựng vào khoảng cuối thế kỉ XI đến đầu thế kỉ XII nằm trên ngọn đồi tại thôn Đại Lộc, xã Phước Hiệp, huyện Tuy Phước, tỉnh Bình Định. Theo dòng thời gian, tháp Bánh Ít đã mang trong mình những dấu ấn lịch sử của Vương quốc Chăm Pa cổ đại. Trong một lần đi dã ngoại các bạn học sinh trường Phổ thông Năng Khiếu đã thực hiện phép đo ngọn tháp bằng cách đặt hai giác kế (công cụ dùng để đo góc) tại hai điểm A, B trên mặt đất cách nhau 12m cùng thẳng hàng với chân C của tháp. Chân của giác kế có chiều cao h = 1,3m. Gọi D là đỉnh tháp, các điểm C1, A1, B1 thẳng hàng (như hình vẽ). Các bạn nhận thấy DA1C1 = 49° và DB1C1 = 35°. Hãy tính chiều cao CD của ngọn tháp. + Trong trận chung kết World Cup 2022, Leonel Messi đã có cơ hội thực hiện cú sút phạt trực tiếp trước khung thành đội Pháp. Các cầu thủ Pháp lập thành hàng rào chắn cách điểm đá phạt 9m và cầu thủ cao nhất trong hàng rào là 2m. Giả định rằng quỹ đạo quả bóng sau khi Messi thực hiện cú sút là một Parabol (như hình vẽ) và nó đạt được chiều cao cực đại là 3m sau khi rời chân Messi 14m. Hỏi cú đá phạt này của Messi có đưa bóng đi qua điểm cao nhất của hàng vào hay không? Tại sao? + Cho tam giác ABC có AB = 2, AC = 2 2 và BAC = 35. Gọi M là điểm nằm trên cạnh BC sao cho BC = 3CM. a) Tính AB.AC. Tính độ dài đoạn thẳng BC. b) Biểu diễn AM theo AB, AC. Tính AM. c) Gọi N là điểm thoả mãn AN = xAC với x thuộc R. Tìm x sao cho BN vuông góc AM.

Nguồn: sytu.vn

Đọc Sách

Đề thi học kì 1 Toán 10 năm 2019 - 2020 trường THPT Phước Kiển - TP HCM
giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 10 đề thi học kì 1 Toán 10 năm học 2019 – 2020 trường THPT Phước Kiển, thành phố Hồ Chí Minh, đề thi có đáp án và lời giải chi tiết. Trích dẫn đề thi học kì 1 Toán 10 năm 2019 – 2020 trường THPT Phước Kiển – TP HCM : + Trong mặt phẳng Oxy, cho ba điểm A(-1;-1), B(3;1), C(6;0). a) Chứng minh rằng ba điểm A, B, C lập thành một tam giác. b) Tìm toạ độ điểm E thuộc Oy sao cho tam giác ABE vuông tại B. c) Tính góc 𝐴𝐵𝐶 và chu vi của tam giác ABC. + Xác định hàm số (P): y = -x2 + bx + c, biết đồ thị của hàm số (P) đi qua điểm A(-2;0) và có trục đối xứng là x = -5. + Khảo sát sự biến thiên và vẽ đồ thị của hàm số y = 2×2 – 4x + 2.
Đề thi học kì 1 Toán 10 năm 2019 - 2020 trường THPT Phú Hòa - TP HCM
giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 10 đề thi học kì 1 Toán 10 năm học 2019 – 2020 trường THPT Phú Hòa, thành phố Hồ Chí Minh, đề thi có đáp án và lời giải chi tiết. Trích dẫn đề thi học kì 1 Toán 10 năm 2019 – 2020 trường THPT Phú Hòa – TP HCM : + Một trường THPT có tổng số học sinh khối 10, khối 11 và khối 12 là 1378 học sinh. Tổng số học sinh khối 10 và khối 11 bằng 38/15 số học sinh khối 12. Biết rằng 3 lần số học sinh khối 12 nhiều hơn 2 lần số học sinh khối 10 là 106 học sinh. Hỏi mỗi khối có bao nhiêu học sinh? + Tìm tập xác định của hàm số. + Cho tam giác ABC có AB = 7a, BC = 8a, AC = 9a. a) Tính diện tích tam giác ABC. b) Tính bán kính đường tròn ngoại tiếp tam giác ABC và cos ACB.
Đề thi học kì 1 Toán 10 năm 2019 - 2020 trường THPT Phạm Phú Thứ - TP HCM
giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 10 đề thi học kì 1 Toán 10 năm học 2019 – 2020 trường THPT Phạm Phú Thứ, thành phố Hồ Chí Minh, đề thi có đáp án và lời giải chi tiết. Trích dẫn đề thi học kì 1 Toán 10 năm 2019 – 2020 trường THPT Phạm Phú Thứ – TP HCM : + Nam được mẹ cho một số tiền (đơn vị: nghìn đồng) vừa đủ để mua 3 quyển vở và 5 cây bút. Biết rằng số tiền đó cũng vừa đủ để mua 4 quyển vở và 2 cây bút (cùng loại trên); còn nếu Nam muốn mua thêm 1 quyển vở và 2 cây bút (cùng loại trên) thì phải bỏ ra thêm 15 nghìn đồng. Hỏi Nam đã được mẹ cho bao nhiêu tiền? + Trong mặt phẳng với hệ trục tọa độ Oxy, cho tam giác ABC có A(3;9), B(-2;-1), C(-5;3). a) Chứng minh tam giác ABC là tam giác vuông. Tính diện tích tam giác ABC. b) Tìm tọa độ điểm D để ABDC là hình bình hành. Tìm tọa độ tâm của hình bình hành này. c) Gọi CH là đường cao của tam giác ABC (H thuộc AB). Tìm tọa độ điểm H. + Xét tính chẵn, lẻ của hàm số f(x) = |3x| – 2/x2.
Đề thi học kỳ 1 Toán 10 năm 2019 - 2020 trường THPT Phan Đình Phùng - Hà Nội
Đề thi học kỳ 1 Toán 10 năm 2019 – 2020 trường THPT Phan Đình Phùng – Hà Nội được biên soạn theo dạng đề trắc nghiệm khách quan kết hợp với tự luận, đề có mã 123 gồm 02 trang với 12 câu trắc nghiệm (03 điểm) và 04 câu tự luận (07 điểm), thời gian học sinh làm bài thi là 90 phút, đề thi có đáp án và lời giải chi tiết. Trích dẫn đề thi học kỳ 1 Toán 10 năm 2019 – 2020 trường THPT Phan Đình Phùng – Hà Nội : + Trong các mệnh đề sau, mệnh đề nào là mệnh đề đúng? A. Tích của hai số tự nhiên là một số chẵn khi và chỉ khi cả hai số đều là số chẵn. B. Tổng của hai số tự nhiên là một số lẻ khi và chỉ khi cả hai số đều là số lẻ. C. Tổng của hai số tự nhiên là một số chẵn khi và chỉ khi cả hai số đều là số chẵn. D. Tích của hai số tự nhiên là một số lẻ khi và chỉ khi cả hai số đều là số lẻ. + Cho hàm số y = 2x^2 – 4mx – m + 5. a) Với m = 1, tìm khoảng đồng biến của hàm số. b) Tìm giá trị của m để hàm số đạt giá trị nhỏ nhất bằng 5. c) Tìm giá trị của m để đường thẳng y = 5 cắt đồ thị hàm số y = 2x^2 – 4mx – m + 5 tại hai điểm phân biệt A và B sao cho AB = 6. + Trong mặt phẳng tọa độ Oxy, cho hai điểm A(1;2), B(-2;1). Tìm tọa độ điểm M để tam giác MAB vuông cân tại M.