Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề học sinh giỏi cấp tỉnh Toán THPT năm 2022 2023 sở GD ĐT Quảng Ninh

Nội dung Đề học sinh giỏi cấp tỉnh Toán THPT năm 2022 2023 sở GD ĐT Quảng Ninh Bản PDF Sytu giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 12 đề thi chọn học sinh giỏi cấp tỉnh môn Toán THPT năm học 2022 – 2023 sở Giáo dục và Đào tạo UBND tỉnh Quảng Ninh; đề thi gồm 01 trang với 06 bài toán dạng tự luận, thang điểm 20, thời gian làm bài 180 phút (không kể thời gian phát đề); kỳ thi được diễn ra vào sáng thứ Sáu ngày 02 tháng 12 năm 2022. Trích dẫn Đề học sinh giỏi cấp tỉnh Toán THPT năm 2022 – 2023 sở GD&ĐT Quảng Ninh : + Cho tam giác đều ABC. Trên mỗi cạnh AB, BC, CA lần lượt lấy 4 điểm phân biệt và không điểm nào trùng với các đỉnh A, B, C. Hỏi lập được bao nhiêu tam giác mà các đỉnh của nó thuộc tập hợp 15 điểm đã cho (tính cả các điểm A, B, C)? + Một người chọn ngẫu nhiên một số điện thoại, trong đó mỗi số có mười chữ số và ba chữ số đầu cố định là 099. Số điện thoại này được gọi là may mắn nếu bốn chữ số tiếp theo là các chữ số chẵn đôi một khác nhau, ba chữ số cuối là các số lẻ và tổng ba chữ số này bằng 9. Tính xác suất để người đó nhận được số điện thoại may mắn. + Cho hình chóp S.ABCD có đáy ABCD là hình chữ nhật, AB 3 BC 6 đường thẳng SA vuông góc với mặt phẳng ABCD. Điểm M thuộc đoạn BC sao cho 1 3 BM BC. Góc giữa đường thẳng SC và mặt phẳng SAB bằng 45°. a) Tính thể tích khối chóp S.ABCD. b) Tính khoảng cách giữa hai đường thẳng SM và AC. c) Gọi H và K lần lượt là hình chiếu vuông góc của A trên SM và SC. Chứng minh hình chóp A.CMHK nội tiếp một mặt cầu. Tính bán kính mặt cầu đó.

Nguồn: sytu.vn

Đọc Sách

Đề thi HSG Toán 12 lần 4 năm 2022 - 2023 trường THPT Giao Thủy - Nam Định
giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 12 đề thi thử học sinh giỏi môn Toán 12 THPT lần 4 năm học 2022 – 2023 trường THPT Giao Thủy, tỉnh Nam Định; đề thi gồm hai phần: Phần I: Trắc nghiệm (Thí sinh chọn một đáp án viết câu trả lời vào tờ giấy thi) và Phần II: Viết đáp án (Thí sinh viết câu trả lời vào tờ giấy thi theo hàng dọc, viết rõ đơn vị nếu có); thời gian làm bài: 120 phút; đề thi có ma trận, đáp án, lời giải chi tiết và thang chấm điểm. Trích dẫn Đề thi HSG Toán 12 lần 4 năm 2022 – 2023 trường THPT Giao Thủy – Nam Định : + Một cuộn đề can hình trụ có đường kính 44,9 cm. Trong thời gian diễn ra AFF cup 2018, người ta đã sử dụng để in các băng rôn, khẩu hiệu cổ vũ cho đội tuyển Việt Nam, do đó đường kính của cuộn đề can còn lại là 12,5 cm. Biết độ dày của tấm đề can là 0,06 cm, hãy tính chiều dài L của tấm đề can đã sử dụng? (Làm tròn đến hàng đơn vị). + Người ta nối trung điểm các cạnh của một hình hộp chữ nhật rồi cắt bỏ các hình chóp tam giác ở các góc của hình hộp như hình vẽ bên. Hình còn lại là một đa diện có số đỉnh và số cạnh là A. đỉnh cạnh. B. đỉnh cạnh. C. đỉnh cạnh. D. đỉnh cạnh. + Cho đồ thị hàm số và như hình vẽ bên. Biết đồ thị của hàm số là một Parabol đỉnh có tung độ bằng và là một hàm số bậc ba. Hoành độ giao điểm của hai đồ thị là thỏa mãn. Diện tích hình phẳng giới hạn bởi 2 đồ thị hàm số và gần nhất với giá trị nào dưới đây?
Đề thi chọn học sinh giỏi Toán 12 năm 2022 - 2023 sở GDĐT Nam Định
giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 12 đề thi chọn học sinh giỏi môn Toán 12 THPT năm học 2022 – 2023 sở Giáo dục và Đào tạo tỉnh Nam Định; đề thi gồm hai phần: Phần I: Trắc nghiệm (thí sinh chọn một đáp án và ghi vào tờ giấy thi) và Phần II: Viết đáp án (viết câu trả lời vào tờ giấy thi theo hàng dọc, viết đơn vị nếu có), thời gian làm bài: 120 phút; đề thi có đáp án MÃ ĐỀ 201 MÃ ĐỀ 202 MÃ ĐỀ 203 MÃ ĐỀ 204. Trích dẫn Đề thi chọn học sinh giỏi Toán 12 năm 2022 – 2023 sở GD&ĐT Nam Định : + Cho hai hình cầu có bán kính lần lượt là r cm 1 5 và r cm 2 10 tiếp xúc với nhau. Một hình nón (N) có các đường sinh tiếp xúc với hai hình cầu và có mặt đáy tiếp xúc với hình cầu lớn như hình vẽ. Diện tích xung quanh của hình nón (N) bằng? + Cho khối trụ T có trục OO’, bán kính r = 6 và thể tích là V. Cắt khối trụ T thành hai phần bởi mặt phẳng song song với trục và cách trục OO’ một khoảng bằng 3 (tham khảo hình vẽ). Gọi V1 là thể tích phần không chứa trục OO’. Tính tỉ số V1/V. + Cho hàm số 43 2 f x mx nx px qx r. Biết rằng đồ thị hàm số y fx cắt trục hoành tại ba điểm có hoành độ abc theo thứ tự lập thành cấp số cộng có công sai d > 0. Gọi S là tập hợp các nghiệm của phương trình 2 d fx fb. Hỏi tập S có bao nhiêu phần tử?
Đề thi học sinh giỏi cấp tỉnh Toán 12 năm 2022 - 2023 sở GDĐT Bến Tre
giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 12 đề thi chọn học sinh giỏi cấp tỉnh môn Toán 12 Trung học Phổ thông (THPT) năm học 2022 – 2023 sở Giáo dục và Đào tạo tỉnh Bến Tre; kỳ thi được diễn ra vào sáng thứ Năm ngày 09 tháng 03 năm 2023. Trích dẫn đề thi học sinh giỏi cấp tỉnh Toán 12 năm 2022 – 2023 sở GD&ĐT Bến Tre : + Cho hàm số y = (m − 3)x3 + mx2 + (m + 1)x + 9. Tìm tất cả các giá trị thực của tham số m để hàm số nghịch biến trên R. Cho phương trình x4 − 4×3 + 8x = k (với k là tham số thực). a) Giải phương trình với k = 5. b) Tìm tất cả các số nguyên k để phương trình có 4 nghiệm phân biệt. + Trong 1600 thí sinh dự thi Kỳ thi chọn học sinh giỏi cấp tỉnh ngày 9/3/2023, người ta lập ra các nhóm như sau: Chọn k thí sinh trong 1600 thí sinh và trong k thí sinh đó chọn ra 1 thí sinh làm nhóm trưởng (1 ≤ k ≤ 1600). Hỏi có tất cả bao nhiêu cách lập ra các nhóm như trên. + Cho hình lập phương ABCD.A0B0C0D0 có độ dài cạnh bằng a. Trên đoạn AD0 lấy điểm M, trên đoạn BD lấy điểm N sao cho AM = DN = x, với 0 < x < a√2. Chứng minh độ dài đoạn MN ngắn nhất khi x = a√23. Khi đó, tính độ dài đoạn MN. a) Cho tứ diện ABCD. Chứng minh rằng (AB + CD)2 + (AD + BC)2 > (AC + BD)2.
Đề thi học sinh giỏi Toán 12 năm 2022 - 2023 sở GDĐT TP Hồ Chí Minh
giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 12 đề thi chọn học sinh giỏi cấp thành phố môn Toán 12 năm học 2022 – 2023 sở Giáo dục và Đào tạo thành phố Hồ Chí Minh; kỳ thi được diễn ra vào ngày 07 tháng 03 năm 2023. Trích dẫn đề thi học sinh giỏi Toán 12 năm 2022 – 2023 sở GD&ĐT TP Hồ Chí Minh : + Với m là tham số thực, xét các phương trình: 2 2 2 log log 2023 0 x x m (1) và 1 3 3 y y m (2). a) Tìm tất cả các giá trị của m sao cho phương trình (1) có hai nghiệm phân biệt lớn hơn 1. b) Tìm tất cả các giá trị của m sao cho phương trình (2) có hai nghiệm phân biệt dương. c) Tìm tất cả các giá trị của m sao cho phương trình (1) có hai nghiệm 1 x 2 x và phương trình (2) có hai nghiệm 1 y 2 y; đồng thời, nếu xét các điểm A x y 1 1 và B x y 2 2 trong hệ trục tọa độ Oxy thì tam giác OAB vuông tại O. + Cho hàm số 4 2 2 2 x f x x có đồ thị (C). Tìm tất cả các điểm M thuộc (C) sao cho tiếp tuyến tại M của (C) cắt (C) tại hai điểm phân biệt A, B khác M và MA MB 3. + Xét hàm số 3 3 3 2 2023 3 2 2022 x x f x x x và gọi S là tập hợp các số nguyên có giá trị tuyệt đối không vượt quá 28. Chọn ngẫu nhiên hai số a b S với a b. Tính xác suất để hàm số f x đồng biến trên khoảng a b.