Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề giao lưu HSG Toán 12 lần 4 năm 2023 - 2024 trường THPT Mai Anh Tuấn - Thanh Hóa

giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 12 đề thi giao lưu học sinh giỏi cụm các trường THPT môn Toán 12 lần thứ 4 năm học 2023 – 2024 trường THPT Mai Anh Tuấn, tỉnh Thanh Hóa; kỳ thi được diễn ra vào ngày 09 tháng 11 năm 2023; đề thi có đáp án trắc nghiệm mã đề 457 881 198 138 202. Trích dẫn Đề giao lưu HSG Toán 12 lần 4 năm 2023 – 2024 trường THPT Mai Anh Tuấn – Thanh Hóa : + Một người thợ thủ công làm mô hình đèn lồng bát diện đều, mỗi cạnh của bát diện đó được làm từ các que tre có độ dài 8 cm. Hỏi người đó cần bao nhiêu mét que tre để làm 100 cái đèn (giả sử mối nối giữa các que tre có độ dài không đáng kể)? + Trước khi lấy được đồ đựng trong tủ đồ của mình thì An phải nhập mật mã của tủ đồ. Biết An chỉ nhớ rằng mật mã của tủ đồ là một dãy kí từ gồm 6 chữ số dạng abcdef (trong đó abcdef là các chữ số từ 0 đến 9) tương ứng với 3 cặp số phân biệt ab cd ef và hai trong ba cặp số này là 17, 24 cặp số còn lại không vượt quá 40 nhưng không nhớ thứ tự của chúng. Hỏi trong trường hợp xấu nhất An phải nhập mật mã tối đa bao nhiêu lần để mở được tủ đồ đó? + Cho tam giác ABC đều cạnh a. Đường thẳng ∆ vuông góc với (ABC) tại A. Điểm M thay đổi trên đường thẳng ∆ (M A). Đường thẳng đi qua các trực tâm của các tam giác ABC và MBC cắt đường thẳng ∆ tại N. Tìm GTNN của thể tích khối tứ diện MNBC.

Nguồn: toanmath.com

Đọc Sách

Đề chọn đội tuyển Toán năm 2021 2022 trường Phổ thông Năng khiếu TP HCM
Nội dung Đề chọn đội tuyển Toán năm 2021 2022 trường Phổ thông Năng khiếu TP HCM Bản PDF Sytu giới thiệu đến quý thầy, cô giáo và các em học sinh đề chọn đội tuyển Toán năm học 2021 – 2022 trường Phổ thông Năng khiếu, thành phố Hồ Chí Minh; kỳ thi được diễn ra trong hai ngày: Thứ Bảy 04/12/2021 và Thứ Ba 07/12/2021.
Đề chọn đội tuyển thi HSG QG môn Toán năm 2021 2022 sở GD ĐT Đồng Nai
Nội dung Đề chọn đội tuyển thi HSG QG môn Toán năm 2021 2022 sở GD ĐT Đồng Nai Bản PDF Thứ Hai ngày 22 tháng 11 năm 2021, sở Giáo dục và Đào tạo Đồng Nai tổ chức kỳ thi chọn đội tuyển học sinh giỏi THPT môn Toán học dự thi cấp Quốc gia năm học 2021 – 2022. Đề chọn đội tuyển thi HSG QG môn Toán năm 2021 – 2022 sở GD&ĐT Đồng Nai gồm 05 bài toán dạng tự luận, thời gian làm bài 180 phút.
Đề chọn đội tuyển HSG lớp 12 môn Toán năm 2021 2022 sở GD ĐT Bà Rịa Vũng Tàu
Nội dung Đề chọn đội tuyển HSG lớp 12 môn Toán năm 2021 2022 sở GD ĐT Bà Rịa Vũng Tàu Bản PDF Đề chọn đội tuyển HSG Toán lớp 12 năm 2021 – 2022 sở GD&ĐT Bà Rịa – Vũng Tàu gồm 01 trang với 05 bài toán dạng tự luận, thời gian làm bài 180 phút, kỳ thi được diễn ra vào ngày 24 tháng 11 năm 2021. Trích dẫn đề chọn đội tuyển HSG Toán lớp 12 năm 2021 – 2022 sở GD&ĐT Bà Rịa – Vũng Tàu : + Cho tam giác ABC nhọn, không cân, nội tiếp đường tròn tâm O và có các đường cao AD, BE, CF cắt nhau tại H. Gọi O1 là điểm đối xứng của O qua đường thẳng BC. AO1 cắt BC tại L, DE cắt HC tại M, DF cắt HB tại N. a) Chứng minh đường tròn ngoại tiếp tam giác DMN và đường tròn đường kính AL tiếp xúc nhau. b) Tiếp tuyến tại D của đường tròn đường kính AL cắt EF tại K. Chứng minh KH = KD. + Cho các số nguyên dương a, b, c phân biệt. Chứng minh tồn tại số nguyên n sao cho a + n, b + n, c + n là các số đôi một nguyên tố cùng nhau. + Trên mặt phẳng ta vẽ 3333 đường tròn đôi một khác nhau và có bán kính bằng nhau. Chứng minh rằng luôn chọn ra được trong số đó 34 đường tròn mà các đường tròn này đôi một có điểm chung hoặc đôi một không có điểm chung.
Đề chọn đội tuyển HSG QG môn Toán năm 2022 trường chuyên Hùng Vương Bình Dương
Nội dung Đề chọn đội tuyển HSG QG môn Toán năm 2022 trường chuyên Hùng Vương Bình Dương Bản PDF Đề thi chọn đội tuyển học sinh giỏi Quốc gia môn Toán năm học 2021 – 2022 trường THPT chuyên Hùng Vương – Bình Dương gồm 02 trang với 07 bài toán dạng tự luận, kỳ thi được diễn ra trong hai ngày. Trích dẫn đề chọn đội tuyển HSG QG môn Toán năm 2022 trường chuyên Hùng Vương – Bình Dương : + Cho tam giác ABC nhọn, không cân có các đường cao BE, CF cắt nhau tại H. Lấy điểm X trên đường thẳng BH và điểm Y trên đường thẳng CH sao cho tứ giác MXHY là hình bình hành. Gọi R là giao điểm của các đường thẳng XY, EF. a) Chứng minh rằng AR song song với BC. b) Chứng minh rằng AH là trục đẳng phương của đường tròn ngoại tiếp tam giác BHY và tam giác CHX. + Thầy chủ nhiệm đội tuyển đăng ký cho n học sinh tham gia các buổi học chuyên đề của viện Toán với tổng cộng m buổi. Kết thúc khóa học, các học sinh sẽ chia sẻ bài cho nhau cùng học. Biết rằng mỗi buổi, thấy đăng ký cho đúng 3 học sinh và không có 2 bạn nào học chung 2 buổi trở lên. a) Giả sử m = 7, tìm giá trị nhỏ nhất của n. b) Giả sử n = 15 và khi đăng ký xong thì Ban tổ chức ra thông báo mới là tối đa 10 bạn được tham gia. Hỏi thấy có cách nào loại đi 5 học sinh nào đó (và giữ nguyên buổi đăng ký của các học sinh khác) mà đội tuyển vẫn có đầy đủ bài của tất cả các buổi học được hay không? + Chứng minh rằng không tồn tại dãy số thực (xn) thỏa mãn x1 = 2 và với mọi số nguyên dương n.