Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi HSG Toán 9 cấp quận năm 2022 - 2023 phòng GDĐT Hải An - Hải Phòng

THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi chọn học sinh giỏi môn Toán 9 cấp quận năm học 2022 – 2023 phòng Giáo dục và Đào tạo UBND quận Hải An, thành phố Hải Phòng; đề thi có đáp án, hướng dẫn giải chi tiết và thang chấm điểm. Trích dẫn Đề thi HSG Toán 9 cấp quận năm 2022 – 2023 phòng GD&ĐT Hải An – Hải Phòng : + Cho đường tròn (O; R) và một điểm A nằm ngoài đường tròn (O). Qua A lần lượt kẻ các tiếp tuyến AB, AC đến đường tròn (O) (B, C là các tiếp điểm. Lấy điểm D thuộc đường tròn (O) sao cho BD // AO. Đường thẳng AD cắt đường tròn (O) tại điểm thứ hai E. Gọi M là trung điểm của AC. a) Chứng minh rằng ME là tiếp tuyến của đường tròn (O) b) Gọi T là giao điểm của các đường thẳng ME, BC, I là giao điểm của các đường thẳng DE, BC. Chứng minh OI AT c) Qua E kẻ đường thẳng song song với đường thẳng AB cắt các đường thẳng BC, BD lần lượt tại các điểm P và Q. Chứng minh rằng: PQ = PE. + Trên bảng ta viết 3 số 1 2 2 2. Mỗi bước ta chọn 2 số a b bất kỳ trên bảng, xóa chúng đi và thay bởi 2 số 2 2 a ba b và giữ nguyên số còn lại. Hỏi sau một số hữu hạn bước, ta có thể thu được 3 số 1 2 1 2 2 2 trên bảng được không? + Cho các số nguyên dương abc thỏa mãn 222 abc Chứng minh rằng ab chia hết cho: abc.

Nguồn: toanmath.com

Đọc Sách

Đề HSG Toán THCS cấp huyện năm 2023 - 2024 phòng GDĐT Diên Khánh - Khánh Hòa
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi chọn học sinh giỏi môn Toán THCS cấp huyện năm học 2023 – 2024 phòng Giáo dục và Đào tạo huyện Diên Khánh, tỉnh Khánh Hòa; kỳ thi được diễn ra vào thứ Tư ngày 04 tháng 10 năm 2023. Trích dẫn Đề HSG Toán THCS cấp huyện năm 2023 – 2024 phòng GD&ĐT Diên Khánh – Khánh Hòa : + Cho a, b, c là ba số nguyên phân biệt và đa thức P(x) có hệ số nguyên. Chứng minh rằng ít nhất một trong các đẳng thức sau là sai: P(a) = b; P(b) = c; P(c) = a. + Tìm tất cả các số nguyên tố p để p vừa là tổng vừa là hiệu của hai số nguyên tố. + Cho tứ giác ABCD có ABD = ACD = 90°. Gọi I, K theo thứ tự là hình chiếu vuông góc của B, C trên cạnh AD. Gọi M là giao điểm của CI và BK, O là giao điểm của AC và BD. Qua O vẽ OE vuông góc với BI tại E. a) Chứng minh rằng: OB.IB = OE.AB. b) Chứng minh rằng: OM vuông góc AD. c) Gọi H là giao điểm của AB và DC, L là giao điểm của OM và AD. Chứng minh rằng?
Đề khảo sát HSG Toán 9 lần 1 năm 2023 - 2024 phòng GDĐT Tam Kỳ - Quảng Nam
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề khảo sát học sinh giỏi môn Toán 9 lần 1 năm học 2023 – 2024 phòng Giáo dục và Đào tạo thành phố Tam Kỳ, tỉnh Quảng Nam; kỳ thi được diễn ra vào ngày 28 tháng 09 năm 2023.
Đề khảo sát Toán 9 vòng 1 năm 2023 - 2024 trường THCS Giảng Võ - Hà Nội
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề khảo sát các môn văn hóa và khoa học lớp 9 môn Toán vòng 1 năm học 2023 – 2024 trường THCS Giảng Võ, quận Ba Đình, thành phố Hà Nội; kỳ thi được diễn ra vào Chủ Nhật ngày 01 tháng 10 năm 2023. Trích dẫn Đề khảo sát Toán 9 vòng 1 năm 2023 – 2024 trường THCS Giảng Võ – Hà Nội : + Cho n là số tự nhiên lớn hơn 1 thỏa mãn n2 + 4 và n2 + 11 đều là các số nguyên tố. Chứng minh rằng: n chia hết cho 5. + Cho tam giác ABC vuông tại A (AB < AC), H là chân đường vuông góc hạ từ A lên BC, M là trung điểm của AC, N là trung điểm của HC. Đường thẳng qua C song song với AB cắt MN tại P. 1) Chứng minh: Các tam giác ABM và CAP đồng dạng. 2) Gọi Q là chân đường vuông góc kẻ từ C lên AP. Chứng minh: HQN = 90°. 3) Đường thẳng HQ cắt MP tại I, gọi K là trung điểm của đoạn thẳng NI, G là trung điểm của đoạn thẳng HQ. Chứng minh: B, G, K thẳng hàng. + Các số nguyên dương 1; 2; …; 100 được chia thành 25 tập hợp (tập hợp nào cũng có ít nhất 1 phần tử). Chứng minh rằng tồn tại ba số nguyên dương thuộc cùng một trong những tập hợp đó sao cho ba số đó là độ dài ba cạnh của một tam giác.
Đề chọn HSG Toán 9 vòng 2 năm 2023 - 2024 trường Nguyễn Tất Thành - Hà Nội
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi chọn học sinh giỏi môn Toán 9 vòng 2 năm học 2023 – 2024 trường THCS & THPT Nguyễn Tất Thành, Đại học Sư Phạm Hà Nội, thành phố Hà Nội; kỳ thi được diễn ra vào ngày 25 tháng 09 năm 2023.