Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đáp án và lời giải chi tiết đề tham khảo tốt nghiệp THPT 2023 môn Toán

giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 12 bảng đáp án và lời giải chi tiết đề thi tham khảo kỳ thi tốt nghiệp THPT năm 2023 môn Toán (Bộ Giáo dục và Đào tạo công bố ngày 01 tháng 03 năm 2023). Ma trận Đề thi tham khảo kỳ thi tốt nghiệp THPT năm 2023 môn Toán: TOÁN 11 : + Hoán vị – chỉnh hợp – tổ hợp: Câu 22: NB. + Xác suất: Câu 33: TH. + Cấp số nhân: Câu 5: NB. + Góc: Câu 30: TH. + Khoảng cách: Câu 38: TH. TOÁN 12 : Ứng dụng của đạo hàm: + Đơn điệu: Câu 26: NB – Câu 32: TH – Câu 50: VDC. + Cực trị: Câu 19 – Câu 27: NB – Câu 41: VC. + Tiệm cận: Câu 20: NB. + Khảo sát và vẽ đồ thị hàm số: Câu 7 – Câu 9: NB – Câu 31: TH. Hàm số lũy thừa, hàm số mũ và hàm số logarit: + Lũy thừa, logarit: Câu 28: NB. + Hàm số lũy thừa: Câu 3: NB. + Hàm số mũ và hàm số logarit: Câu 2: NB. + Phương trình mũ và logarit: Câu 34: TH. + Bất phương trình mũ và logarit: Câu 4 – Câu 21: NB – Câu 39: VD – Câu 47: VDC. Nguyên hàm, tích phân và ứng dụng: + Nguyên hàm: Câu 23 – Câu 25: NB. + Tích phân: Câu 8 – Câu 24: NB – Câu 40: VD. + Ứng dụng: Câu 29: TH – Câu 44: VD. Số phức: + Số phức và các phép toán: Câu 1 – Câu 12 – Câu 16: NB – Câu 35: TH. + Phương trình bậc hai: Câu 45: VD. + Min – max số phức: Câu 42: VDC. Khối đa diện: + Thể tích khối đa diện: Câu 13 – Câu 14: NB. Mặt nón – mặt trụ – mặt cầu: + Nón: Câu 17: NB – Câu 43 – Câu 48: VD. Phương pháp tọa độ trong không gian: + Hệ trụ tọa độ Oxyz: Câu 11: NB – Câu 37: TH. + Phương trình mặt phẳng: Câu 6: NB – Câu 46: VD. + Phương trình đường thẳng: Câu 18: NB – Câu 36: TH. + Phương trình mặt cầu: Câu 10 – Câu 15: NB. + Min – max hình học Oxyz: Câu 49: VDC. * Ghi chú : NB: Mức độ nhận biết; TH: Mức độ thông hiểu; VD: Mức độ vận dụng; VDC: Mức độ vận dụng cao.

Nguồn: toanmath.com

Đọc Sách

Đề thi thử tốt nghiệp THPT 2024 môn Toán liên trường THPT - Hà Tĩnh
giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 12 đề thi thử tốt nghiệp THPT năm học 2023 – 2024 môn Toán liên trường THPT sở Giáo dục và Đào tạo tỉnh Hà Tĩnh: THPT Cù Huy Cận – THPT Vũ Quang – THPT Đức Thọ; kỳ thi được diễn ra vào ngày 20 tháng 01 năm 2024; đề thi có đáp án và lời giải chi tiết mã đề 101 – 102 – 103 – 104. Trích dẫn Đề thi thử tốt nghiệp THPT 2024 môn Toán liên trường THPT – Hà Tĩnh : + Trong không gian với hệ tọa độ Oxyz cho mặt cầu 22 Sx y z x y 2 2 30 và hai điểm A B 350 010. Điểm M abc di động trên (S). Khi biểu thức MA MB 2 đạt giá trị nhỏ nhất thì 2abc bằng? + Xét tất cả các số thực x y sao cho 2 3 4 log 68 9 x a y a với mọi số thực dương a. Khi biểu thức 2 2 P x yxy 22 4 đạt giá trị lớn nhất thì 2x y bằng? + Cho hình nón tròn xoay có chiều cao bằng 2a, bán kính đáy bằng 3a. Một thiết diện đi qua đỉnh của hình nón có khoảng cách từ tâm của đáy đến mặt phẳng chứa thiết diện bằng 3 2 a. Diện tích của thiết diện đó bằng?
Đề thi thử Toán tốt nghiệp THPT 2024 lần 1 trường chuyên Hạ Long - Quảng Ninh
giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 12 đề thi thử môn Toán tốt nghiệp THPT năm học 2023 – 2024 lần 1 trường THPT chuyên Hạ Long, tỉnh Quảng Ninh (mã đề 103); kỳ thi được diễn ra vào ngày … tháng 01 năm 2024. Trích dẫn Đề thi thử Toán tốt nghiệp THPT 2024 lần 1 trường chuyên Hạ Long – Quảng Ninh : + Giải bóng đá ngoại hạng Anh gồm 20 đội bóng tham gia, biết rằng mỗi đội bóng phải đá với mỗi đội bóng còn lại 2 trận (1 trận sân nhà và 1 trận sân khách). Hỏi kết thức mùa giải ban tổ chức phải tổ chức bao nhiêu trận đấu? + Cho hàm số y = x3 − 2(m + 1)x2 + (5m + 1)x − 2m − 2 có đồ thị là (C) với m là tham số. Tập S là tập hợp các giá trị nguyên của m và m thuộc (–2024;2024) để (Cm) cắt trục hoành tại ba điểm phân biệt A(2;0), B, C sao cho trong hai điểm B, C có một điểm nằm trong và một điểm nằm ngoài đường tròn có phương trình x2 + y2 = 1. Tính số các phần tử của S. + Một khúc gỗ có dạng hình khối nón có bán kính đáy bằng r = 2m, chiều cao h = 6m. Bác thợ mộc chế tác từ khúc gỗ đó thành một khúc gỗ có dạng hình khối trụ như hình vẽ. Gọi V là thể tích lớn nhất của khúc gỗ hình trụ sau khi chế tác. Tính V.
Đề thi thử TN THPT 2024 lần 1 môn Toán trường THPT Hòn Gai - Quảng Ninh
giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 12 đề thi thử tốt nghiệp THPT năm học 2023 – 2024 lần 1 môn Toán trường THPT Hòn Gai, thành phố Hạ Long, tỉnh Quảng Ninh (mã đề 322). Trích dẫn Đề thi thử TN THPT 2024 lần 1 môn Toán trường THPT Hòn Gai – Quảng Ninh : + Cho một hình trụ tròn xoay và hình vuông ABCD cạnh a có hai đỉnh liên tiếp A, B nằm trên đường tròn đáy thứ nhất của hình trụ, hai đỉnh còn lại nằm trên đường tròn đáy thứ hai của hình trụ. Mặt phẳng (ABCD) tạo với đáy hình trụ góc 45°. Tính diện tích xung quanh hình trụ. + Người ta cần làm một cái bồn chứa dạng hình trụ có thể tích 1000 lít bằng inox để chứa nước, tính bán kính R của hình trụ đó sao cho diện tích toàn phần của bồn chứa đạt giá trị nhỏ nhất? + Trong mặt phẳng (P) cho hình chữ nhật ABCD có AB = a, AD = b. Trên các nửa đường thẳng Ax, Cy vuông góc với (P) và ở cùng một phía với mặt phẳng ấy, lần lượt lấy các điểm M, N sao cho (MBD) vuông góc với (NBD). Tìm giá trị nhỏ nhất Vmin của tứ diện MNBD.
Đề thi thử Toán TN THPT 2024 lần 2 trường THPT Lục Ngạn 1 - Bắc Giang
giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 12 đề thi thử môn Toán tốt nghiệp THPT năm học 2023 – 2024 lần 2 trường THPT Lục Ngạn số 1, tỉnh Bắc Giang; kỳ thi được diễn ra vào ngày 15 – 16 – 17 tháng 12 năm 2023; đề thi có đáp án trắc nghiệm mã đề 001. Trích dẫn Đề thi thử Toán TN THPT 2024 lần 2 trường THPT Lục Ngạn 1 – Bắc Giang : + Một tấm tôn hình tam giác ABC có độ dài cạnh AB AC BC 3 2 19. Điểm H là chân đường cao kẻ từ đỉnh A của tam giác ABC. Người ta dùng compa có tâm là A, bán kính AH vạch một cung tròn nhỏ MN. Lấy phần hình quạt gò thành hình nón không có mặt đáy với đỉnh là A, cung MN thành đường tròn đáy của hình nón (như hình vẽ). Tính thể tích khối nón trên. + Cho hình chóp S.ABCD có đáy là hình thang vuông tại A và B. Biết SA vuông góc với ABCD AB BC a AD a SA a. Gọi E là trung điểm của AD. Bán kính mặt cầu đi qua các điểm S D C E bằng? + Có bao nhiêu số nguyên a thuộc (0;2023) sao cho ứng với mỗi a, tồn tại ít nhất mười số nguyên b 3 10 thỏa mãn 2 2 3 6560 3 b a a b?