Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Ngân hàng câu hỏi số phức Phương trình với hệ số thực - Lê Bá Bảo

Tài liệu gồm 32 trang, được biên soạn bởi thầy giáo Lê Bá Bảo (GV trường THPT Đặng Huy Trứ – Admin CLB Giáo Viên Trẻ TP Huế), tuyển chọn 50 bài toán trắc nghiệm chủ đề phương trình với hệ số thực, có đáp án và lời giải chi tiết, giúp học sinh lớp 12 tham khảo khi học chương trình Giải tích 12 chương 4 và luyện thi THPT Quốc gia môn Toán. Trích dẫn tài liệu Ngân hàng câu hỏi số phức: Phương trình với hệ số thực – Lê Bá Bảo : + Trên tập hợp các số phức, xét phương trình z a z a z 1 1 6 (a là tham số thực). Có bao nhiêu giá trị của a để phương trình đó có hai nghiệm 1 z 2 z thỏa mãn 2 2 1 2 z z 42? Trên tập hợp số phức xét phương trình 2 2 z mz m m 2 2 1 0. Có bao nhiêu giá trị thực của m để phương trình đã cho có 2 nghiệm 1 2 z z; thoả mãn 1 2 z z 2? + Trên tập số phức, xét phương trình 2 2 z m z m m 2 4 4 1 0 m là tham số thực. Có bao nhiêu giá trị m để phương trình đã cho có hai nghiệm phức phân biệt 1 2 z z thỏa điều kiện 1 2 1 2 1 z z. Trên tập hợp các số phức, xét phương trình 2 2 z m z m m 2 2 1 4 5 0 (m là tham số thực). Có bao nhiêu giá trị của tham số m để phương trình có nghiệm 0 z thoả mãn 2 2 0 0 z m z m m 1 4 4 5 3 10? + Trên tập hợp các số phức, phương trình 2 z a z a 2 2 3 0 (a là tham số thực) có 2 nghiệm 1 z 2 z. Gọi M N là điểm biểu diễn của 1 z 2 z trên mặt phẳng tọa độ. Biết rằng có 2 giá trị của tham số a để tam giác OMN có một góc bằng 120. Tổng các giá trị đó bằng bao nhiêu? Trên tập hợp các số phức, xét phương trình 2 z m 2z 2 0 (m là tham số thực). Gọi T là tập hợp các giá trị của m để phương trình trên có hai nghiệm phân biệt được biểu diễn hình học bởi hai điểm A B trên mặt phẳng tọa độ sao cho diện tích tam giác ABC bằng 2 2 với C 1 1. Tổng các phần tử trong T bằng?

Nguồn: toanmath.com

Đọc Sách

Chuyên đề trắc nghiệm biểu diễn hình học của số phức
Tài liệu gồm 24 trang, trình bày lý thuyết trọng tâm, các dạng toán trọng tâm kèm phương pháp giải và bài tập trắc nghiệm tự luyện chuyên đề biểu diễn hình học của số phức, có đáp án và lời giải chi tiết; hỗ trợ học sinh lớp 12 trong quá trình học tập chương trình Toán 12 phần Giải tích chương 4. 1. Định nghĩa. 2. Phương pháp giải toán. + Bài toán 1: Tìm tập hợp điểm biểu diễn số phức z thỏa mãn f zz g zz hoặc f zz là số thực hoặc f zz là số ảo. + Bài toán 2: Tìm tập hợp điểm biểu diễn số phức w biết 1 2 w zz z và số phức z thỏa mãn z a bi R. 3. Các ví dụ minh họa. BÀI TẬP TỰ LUYỆN. LỜI GIẢI CHI TIẾT.
Chuyên đề trắc nghiệm phương trình phức
Tài liệu gồm 19 trang, trình bày lý thuyết trọng tâm, các dạng toán trọng tâm kèm phương pháp giải và bài tập trắc nghiệm tự luyện chuyên đề phương trình phức, có đáp án và lời giải chi tiết; hỗ trợ học sinh lớp 12 trong quá trình học tập chương trình Toán 12 phần Giải tích chương 4. 1. Căn bậc hai của số phức. 2. Phương trình phức. 3. Tìm căn bậc hai của số phức z a bi a b. BÀI TẬP TỰ LUYỆN. LỜI GIẢI CHI TIẾT.
Chuyên đề trắc nghiệm các phép tính toán với số phức
Tài liệu gồm 33 trang, trình bày lý thuyết trọng tâm, các dạng toán trọng tâm kèm phương pháp giải và bài tập trắc nghiệm tự luyện chuyên đề các phép tính toán với số phức, có đáp án và lời giải chi tiết; hỗ trợ học sinh lớp 12 trong quá trình học tập chương trình Toán 12 phần Giải tích chương 4. A. LÝ THUYẾT TRỌNG TÂM 1) Các khái niệm cơ bản. 2) Biểu diễn hình học của số phức. 3) Phép cộng và phép trừ số phức. 4) Số phức liên hợp và môđun của số phức. 5) Phép chia cho số phức khác 0. 6) Một số các kết quả quan trọng. B. PHƯƠNG PHÁP GIẢI TOÁN + Dạng 1: Tính toán cơ bản với số phức. + Dạng 2: Bài toán quy về giải hệ phương trình nghiệm thực. + Dạng 3: Lấy môđun hai vế tìm số phức. BÀI TẬP TỰ LUYỆN. LỜI GIẢI BÀI TẬP TỰ LUYỆN.
Số phức trong đề thi THPT môn Toán (2017 - 2020)
Tài liệu gồm 13 trang, tuyển chọn 135 câu hỏi và bài tập trắc nghiệm chuyên đề số phức có đáp án, được trích từ các đề thi tốt nghiệp THPT Quốc gia môn Toán của Bộ Giáo dục và Đào tạo từ năm học 2016 – 2017 đến năm học 2019 – 2020. Tài liệu giúp học sinh lớp 12 tham khảo khi học chương trình Giải tích 12 chương 4 (số phức) và ôn thi tốt nghiệp Trung học Phổ thông môn Toán năm học 2020 – 2021. Xem thêm : Đề thi THPT Quốc gia môn Toán từ năm 2017 đến năm 2020