Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Nắm trọn chuyên đề hình học Oxyz và số phức

Cuốn sách gồm 511 trang, được biên soạn bởi nhóm tác giả Tư Duy Toán Học 4.0: Phan Nhật Linh, Nguyễn Duy Hiếu, Nguyễn Khánh Linh, Lê Huy Long, tóm tắt toàn bộ lý thuyết và phương pháp giải các dạng toán, các ví dụ minh họa và bài tập rèn luyện từ cơ bản đến nâng cao chuyên đề hình học Oxyz và số phức, giúp các em hoàn thiện kiến thức, rèn tư duy và rèn luyện tốc độ làm bài; tất cả các bài tập trong sách đều có giải chi tiết 100% tiện lợi cho việc so sánh đáp án và tra cứu thông tin. Mục lục cuốn sách nắm trọn chuyên đề hình học Oxyz và số phức: PHẦN I : HÌNH TỌA ĐỘ OXYZ. CHỦ ĐỀ 1: HỆ TỌA ĐỘ TRONG KHÔNG GIAN. Dạng 1. Điểm và vectơ trong hệ tọa độ Oxyz. Dạng 2. Tích vô hướng và ứng dụng. Dạng 3. Phương trình mặt cầu. Dạng 4. Cực trị. CHỦ ĐỀ 2: PHƯƠNG TRÌNH MẶT PHẲNG. Dạng 1. Xác định vectơ pháp tuyến, tính tích có hướng của mặt phẳng. Dạng 2. Viết phương trình mặt phẳng. Dạng 3. Tìm tọa độ điểm liên quan đến mặt phẳng. Dạng 4. Góc và khoảng cách liên quan đến mặt phẳng. Dạng 5. Vị trí tương đối giữa hai mặt phẳng, giữa mặt cầu và mặt phẳng. Dạng 6. Cực trị liên quan đến mặt phẳng. CHỦ ĐỀ 3: PHƯƠNG TRÌNH ĐƯỜNG THẲNG. Dạng 1. Xác định vectơ chỉ phương của đường thẳng. Dạng 2. Viết phương trình đường thẳng. Dạng 3. Tìm tọa độ điểm liên quan đến đường thẳng. Dạng 4. Góc và khoảng cách liên quan đến đường thẳng. Dạng 5. Vị trí tương đối giữa hai đường thẳng, giữa đường thẳng và mặt phẳng. Dạng 6. Bài toán liên quan giữa đường thẳng – mặt phẳng – mặt cầu. Dạng 7. Cực trị liên quan đến đường thẳng. CHỦ ĐỀ 4: ỨNG DỤNG CỦA PHƯƠNG PHÁP TỌA ĐỘ. Dạng 1. Tọa độ hóa Hình học không gian. Dạng 2. Bài toán đại số. CHỦ ĐỀ 5: TỔNG HỢP VỀ HÌNH TỌA ĐỘ OXYZ. PHẦN II : SỐ PHỨC. Dạng toán 1: Xác định các yếu tố cơ bản của số phức. Dạng toán 2: Phép toán cộng, trừ, nhân hai số phức. Dạng toán 3: Phép chia hai số phức. Dạng toán 4: Bài tập quy về giải PT – HPT và tập hợp điểm biễu diễn số phức. Dạng toán 5: Phương trình bậc hai với hệ số thực. Dạng toán 6: Cực trị số phức.

Nguồn: toanmath.com

Đọc Sách

Tóm tắt lý thuyết và bài tập trắc nghiệm vị trí tương đối
Sau một khoảng thời gian nghỉ học kéo dài do ảnh hưởng của tình hình dịch bệnh, thì hiện tại, nhiều trường THPT trên toàn quốc đã bắt đầu cho học sinh đi học trở lại. Đây là thời điểm các em học sinh lớp 12 cần ôn tập lại kiến thức để chuẩn bị cho kỳ thi THPT Quốc gia và kỳ thi tuyển sinh vào các trường Cao đẳng – Đại học năm học 2019 – 2020. giới thiệu đến các em tài liệu tóm tắt lý thuyết và bài tập trắc nghiệm vị trí tương đối, một chủ đề rất quan trọng trong chương trình Hình học 12 chương 3: Phương pháp tọa độ trong không gian. Bên cạnh tài liệu vị trí tương đối dạng PDF dành cho học sinh, còn chia sẻ tài liệu WORD (.doc / .docx) nhằm hỗ trợ quý thầy, cô giáo trong công tác giảng dạy. [ads] Khái quát nội dung tài liệu tóm tắt lý thuyết và bài tập trắc nghiệm vị trí tương đối: A. KIẾN THỨC CƠ BẢN 1. Vị trí tương đối của 2 mặt phẳng. 2. Vị trí tương đối của 2 hai đường thẳng. 3. Vị trí tương đối của đường thẳng và mặt phẳng. 4. Vị trí tương đối của mặt cầu và mặt phẳng. 5. Vị trí tương đối của đường thẳng và mặt cầu. B. BÀI TẬP TRẮC NGHIỆM C. ĐÁP ÁN VÀ HƯỚNG DẪN GIẢI BÀI TẬP TRẮC NGHIỆM
Tóm tắt lý thuyết và bài tập trắc nghiệm phương trình mặt cầu
Sau một khoảng thời gian nghỉ học kéo dài do ảnh hưởng của tình hình dịch bệnh, thì hiện tại, nhiều trường THPT trên toàn quốc đã bắt đầu cho học sinh đi học trở lại. Đây là thời điểm các em học sinh lớp 12 cần ôn tập lại kiến thức để chuẩn bị cho kỳ thi THPT Quốc gia và kỳ thi tuyển sinh vào các trường Cao đẳng – Đại học năm học 2019 – 2020. giới thiệu đến các em tài liệu tóm tắt lý thuyết và bài tập trắc nghiệm phương trình mặt cầu, một chủ đề rất quan trọng trong chương trình Hình học 12 chương 3: Phương pháp tọa độ trong không gian. Bên cạnh tài liệu phương trình mặt cầu dạng PDF dành cho học sinh, còn chia sẻ tài liệu WORD (.doc / .docx) nhằm hỗ trợ quý thầy, cô giáo trong công tác giảng dạy. [ads] Khái quát nội dung tài liệu tóm tắt lý thuyết và bài tập trắc nghiệm phương trình mặt cầu: A. KIẾN THỨC CƠ BẢN 1/ Định nghĩa 2/ Phương trình mặt cầu + Dạng 1: Phương trình mặt cầu dạng chính tắc. + Dạng 2: Phương trình mặt cầu dạng tổng quát. 3/ Vị trí tương đối giữa mặt cầu và mặt phẳng 4/ Vị trí tương đối giữa mặt cầu và đường thẳng 5/ Điều kiện tiếp xúc B. KỸ NĂNG CƠ BẢN Dạng 1 : VIẾT PHƯƠNG TRÌNH MẶT CẦU. Thuật toán 1: + Bước 1: Xác định tâm I(a;b;c). + Bước 2: Xác định bán kính R của (S). + Bước 3: Mặt cầu (S) có tâm I(a;b;c) và bán kính R có phương trình: (S): (x – a)^2 + (y – b)^2 + (z – c)^2 = R^2. Thuật toán 2: Gọi phương trình mặt cầu (S): x^2 + y^2 + z^2 – 2ax – 2by – 2cz + d = 0 với a^2 + b^2 + c^2 – d > 0. Phương trình (S) hoàn toàn xác định nếu biết được a, b, c, d. Dạng 2 : SỰ TƯƠNG GIAO VÀ SỰ TIẾP XÚC. + Đường thẳng ∆ là tiếp tuyến của (S) ⇔ d(I;∆) = R. + Mặt phẳng (α) là tiếp diện của (S) ⇔ d(I;(α)) = R.
Tóm tắt lý thuyết và bài tập trắc nghiệm phương trình mặt phẳng
Sau một khoảng thời gian nghỉ học kéo dài do ảnh hưởng của tình hình dịch bệnh, thì hiện tại, nhiều trường THPT trên toàn quốc đã bắt đầu cho học sinh đi học trở lại. Đây là thời điểm các em học sinh lớp 12 cần ôn tập lại kiến thức để chuẩn bị cho kỳ thi THPT Quốc gia và kỳ thi tuyển sinh vào các trường Cao đẳng – Đại học năm học 2019 – 2020. giới thiệu đến các em tài liệu tóm tắt lý thuyết và bài tập trắc nghiệm phương trình mặt phẳng, một chủ đề rất quan trọng trong chương trình Hình học 12 chương 3: Phương pháp tọa độ trong không gian. Bên cạnh tài liệu phương trình mặt phẳng dạng PDF dành cho học sinh, còn chia sẻ tài liệu WORD (.doc / .docx) nhằm hỗ trợ quý thầy, cô giáo trong công tác giảng dạy. [ads] Khái quát nội dung tài liệu tóm tắt lý thuyết và bài tập trắc nghiệm phương trình mặt phẳng: A. TỔNG HỢP LÝ THUYẾT Dạng 1: Viết phương trình mặt phẳng khi biết một điểm và vectơ pháp tuyến của nó. Dạng 2: Viết phương trình mặt phẳng (α) đi qua một điểm M(x0;y0;z0) và song song với một mặt phẳng (β): Ax + By + Cz + D = 0 cho trước. Dạng 3: Viết phương trình mặt phẳng (α) đi qua 3 điểm A, B, C không thẳng hàng. Dạng 4: Viết phương trình mặt phẳng (α) đi qua điểm M và vuông góc với đường thẳng ∆. Dạng 5: Viết phương trình mặt phẳng (α) chứa đường thẳng ∆, vuông góc với mặt phẳng (β). Dạng 6: Viết phương trình mặt phẳng (α) qua hai điểm A, B và vuông góc với mặt phẳng (β). Dạng 7: Viết phương trình mặt phẳng (α) chứa đường thẳng ∆ và song song với ∆′ (∆, ∆′ chéo nhau). Dạng 8: Viết phương trình mặt phẳng (α) chứa đường thẳng ∆ và điểm M. Dạng 9: Viết phương trình mặt phẳng (α) chứa 2 đường thẳng cắt nhau ∆ và ∆′. Dạng 10: Viết phương trình mặt phẳng (α) chứa 2 đường thẳng song song ∆ và ∆′. Dạng 11: Viết phương trình mặt phẳng (α) đi qua một điểm M và song song với hai đường thẳng ∆ và ∆′ chéo nhau cho trước. Dạng 12: Viết phương trình mặt phẳng (α) đi qua một điểm M và vuông góc với hai mặt phẳng (P) và (Q) cho trước. Dạng 13: Viết phương trình mặt phẳng (α) song song với mặt phẳng (β) và cách (β) một khoảng k cho trước. Dạng 14: Viết phương trình mặt phẳng (α) song song với mặt phẳng (β) cho trước và cách điểm M một khoảng k cho trước. Dạng 15: Viết phương trình mặt phẳng (α) tiếp xúc với mặt cầu (S). Dạng 16: Viết phương trình mặt phẳng (α) chứa một đường thẳng ∆ và tạo với một mặt phẳng (β) cho trước một góc ϕ cho trước.
Tóm tắt lý thuyết và bài tập trắc nghiệm phương trình đường thẳng
Sau một khoảng thời gian nghỉ học kéo dài do ảnh hưởng của tình hình dịch bệnh, thì hiện tại, nhiều trường THPT trên toàn quốc đã bắt đầu cho học sinh đi học trở lại. Đây là thời điểm các em học sinh lớp 12 cần ôn tập lại kiến thức để chuẩn bị cho kỳ thi THPT Quốc gia và kỳ thi tuyển sinh vào các trường Cao đẳng – Đại học năm học 2019 – 2020. giới thiệu đến các em tài liệu tóm tắt lý thuyết và bài tập trắc nghiệm phương trình đường thẳng, một chủ đề rất quan trọng trong chương trình Hình học 12 chương 3: Phương pháp tọa độ trong không gian. Bên cạnh tài liệu phương trình đường thẳng dạng PDF dành cho học sinh, còn chia sẻ tài liệu WORD (.doc / .docx) nhằm hỗ trợ quý thầy, cô giáo trong công tác giảng dạy. [ads] Khái quát nội dung tài liệu tóm tắt lý thuyết và bài tập trắc nghiệm phương trình đường thẳng: A. KIẾN THỨC CƠ BẢN 1. Viết phương trình đường thẳng ∆ đi qua hai điểm phân biệt A và B. 2. Đường thẳng ∆ đi qua điểm M và song song với d. 3. Viết phương trình đường thẳng ∆ đi qua điểm M và vuông góc với mặt phẳng (α). 4. Viết phương trình đường thẳng ∆ đi qua điểm M và vuông góc với hai đường thẳng d1 và d2 (hai đường thẳng không cùng phương). 5. Viết phương trình đường thẳng ∆ đi qua điểm M vuông góc với đường thẳng d và song song với mặt phẳng (α). 6. Viết phương trình đường thẳng ∆ đi qua điểm A và song song với hai mặt phẳng (α) và (β) với (α) và (β) là hai mặt phẳng cắt nhau. 7. Viết phương trình đường thẳng ∆ là giao tuyến của hai mặt phẳng (α) và (β). 8. Viết phương trình đường thẳng ∆ đi qua điểm A và cắt hai đường thẳng d1 và d2 (A không thuộc d1 và d2). 9. Viết phương trình đường thẳng ∆ nằm trong mặt phẳng (α) và cắt hai đường thẳng d1 và d2. 10. Viết phương trình đường thẳng ∆ đi qua điểm A, vuông góc và cắt d. 11. Viết phương trình đường thẳng ∆ đi qua điểm A, vuông góc với d1 và cắt d2 với A ∉ d2. 12. Viết phương trình đường thẳng ∆ đi qua điểm A, cắt đường thẳng d và song song với mặt phẳng (α). 13. Viết phương trình đường thẳng ∆ nằm trong mặt phẳng (α) cắt và vuông góc đường thẳng d. 14. Viết phương trình đường thẳng ∆ đi qua giao điểm A của đường thẳng d và mặt phẳng (α), nằm trong (α) và vuông góc đường thẳng d (ở đây d không vuông góc với (α)). 15. Viết phương trình đường thẳng ∆ là đường vuông góc chung của hai đường thẳng chéo nhau d1 và d2. 16. Viết phương trình đường thẳng ∆ song song với đường thẳng d và cắt cả hai đường thẳng d1 và d2. 17. Viết phương trình đường thẳng ∆ vuông góc với mặt phẳng (α) và cắt cả hai đường thẳng d1 và d2. 18. Viết phương trình ∆ là hình chiếu vuông góc của d lên mặt phẳng (α). 19. Viết phương trình ∆ là hình chiếu song song của d lên mặt phẳng (α) theo phương d’. B. KỸ NĂNG CƠ BẢN 1. Học sinh xác định được vectơ chỉ phương và điểm nào đó thuộc đường thẳng khi cho trước phương trình. 2. Học sinh biết cách chuyển từ phương trình tham số qua phương trình chính tắc và ngược lại. 3. Học sinh lập được phương trình chính tắc và phương trình tham số. 4. Học sinh tìm được hình chiếu, điểm đối xứng. C. BÀI TẬP TRẮC NGHIỆM