Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề khảo sát Toán vào 10 lần 2 năm 2023 2024 phòng GD ĐT Hoằng Hóa Thanh Hóa

Nội dung Đề khảo sát Toán vào 10 lần 2 năm 2023 2024 phòng GD ĐT Hoằng Hóa Thanh Hóa Bản PDF - Nội dung bài viết Đề khảo sát Toán vào lớp 10 lần 2 Đề khảo sát Toán vào lớp 10 lần 2 Chúng tôi xin gửi đến quý thầy cô và các em học sinh lớp 9 đề khảo sát môn Toán thi tuyển sinh vào lớp 10 THPT lần 2 năm học 2023 - 2024 của phòng Giáo dục và Đào tạo huyện Hoằng Hóa, tỉnh Thanh Hóa. Đề thi bao gồm các câu hỏi phong phú, có đáp án và hướng dẫn chấm điểm. Trích dẫn Đề khảo sát Toán vào lớp 10 lần 2 năm 2023 - 2024 phòng GD&DĐT Hoằng Hóa - Thanh Hóa: 1. Trong hệ trục tọa độ Oxy, cho hai đường thẳng (d1): y = 2x + (m - 1) và (d2): y = 3x + 4. Tìm các giá trị của tham số m để đường thẳng (d1) và (d2) song song với nhau. 2. Giải phương trình: 2x^2 + 2mx - 2x + m - 4 = 0 (với x là ẩn số). a) Giải phương trình khi m = 1. b) Tìm các giá trị của m để phương trình có hai nghiệm phân biệt x1, x2 thỏa mãn điều kiện: 2(x1 + 1)^2 + 3(x2 + 1)^2 = 3. 3. Cho tam giác ABC có ba góc nhọn, AB < AC và nội tiếp đường tròn (O). Ba đường cao AD, BE, CF cắt nhau tại H. a) Chứng minh tứ giác AFHE nội tiếp. b) Tia AD cắt đường tròn (O) tại K (K ≠ A). Tiếp tuyến tại C của đường tròn (O) cắt đường thẳng FD tại M. AM cắt đường tròn (O) tại I (I ≠ A). Chứng minh: MC^2 = MI * MA và tam giác CMD cân. c) MD cắt BI tại N. Chứng minh ba điểm C, N, K thẳng hàng. Đề thi có độ khó tăng dần để kiểm tra kiến thức và kỹ năng làm bài của các em. Chúc các em học sinh đạt kết quả cao trong kì thi sắp tới.

Nguồn: sytu.vn

Đọc Sách

Đề thi vào 10 môn Toán (chuyên) năm 2020 - 2021 trường chuyên Hùng Vương - Phú Thọ
Đề thi vào 10 môn Toán (chuyên) năm 2020 – 2021 trường chuyên Hùng Vương – Phú Thọ gồm có 01 trang với 05 bài toán dạng tự luận, thời gian làm bài 150 phút, kỳ thi được diễn ra vào ngày … tháng 07 năm 2020. Trích dẫn đề thi vào 10 môn Toán (chuyên) năm 2020 – 2021 trường chuyên Hùng Vương – Phú Thọ : + Cho tam giác nhọn ABC có trực tâm H và nội tiếp đường tròn (O). Gọi P là điểm nằm trên đường tròn ngoại tiếp tam giác HBC và nằm trong tam giác ABC (P khác B, C, H). Gọi M là giao điểm của đường thẳng PB với đường tròn (O) (M khác B); N là giao điểm của đường thẳng PC với (O) (N khác C). Đường thẳng BM cắt AC tại E, đường thẳng CN cắt AB tại F. Đường tròn ngoại tiếp tam giác AME và đường tròn ngoại tiếp tam giác ANF cắt nhau tại Q (Q khác A). 1. Chứng minh tứ giác AEPF nội tiếp. 2. Chứng minh M, N, Q thẳng hàng. 3. Trong trường hợp AP là phân giác của MAN, chứng minh PQ đi qua trung điểm của đoạn thẳng BC. [ads] + Cho phương trình x2 + mx + n = 0 trong đó m2 + n2 = 2020. Chứng minh nếu phương trình có nghiệm x0 thì |x0| < √2021. + Cho dãy số gồm 4041 số chính phương liên tiếp, trong đó tổng của 2021 số đầu bằng tổng của 2020 số cuối. Tìm số hạng thứ 2021 của dãy số đó.
Đề thi vào lớp 10 môn Toán năm 2020 - 2021 trường chuyên Lê Quý Đôn - Đà Nẵng
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh đề thi vào lớp 10 môn Toán năm 2020 – 2021 trường chuyên Lê Quý Đôn – Đà Nẵng, đề thi có đáp án và lời giải chi tiết. Trích dẫn đề thi vào lớp 10 môn Toán năm 2020 – 2021 trường chuyên Lê Quý Đôn – Đà Nẵng : + Trên đồ thị hàm số y = -0,5x^2, cho điểm M có hoành độ dương và điểm N có hoành độ âm. Đường thẳng MN cắt trục Oy tại C với O là gốc tọa độ. Viết phương trình đường thẳng OM khi C là tâm đường tròn ngoại tiếp tam giác OMN. [ads] + Cho tam giác ABC nhọn (AB khác AC), nội tiếp đường tròn tâm O. Kẻ đường phân giác AD (D thuộc BC) của tam giác đó. Lấy điểm E đối xứng với D qua trung điểm của đoạn BC. Đường thẳng vuông góc với BC tại D cắt AO ở H, đường thẳng vuông góc với BC tại E cắt ở AD tại K. Chứng minh rằng tứ giác BHCK nội tiếp. + Chứng minh rằng với mọi giá trị dương, khác 1 của x thì biểu thức A không nhận giá trị nguyên.
Đề thi vào lớp 10 chuyên môn Toán năm 2020 - 2021 sở GDĐT Nghệ An (chuyên)
Đề thi vào lớp 10 chuyên môn Toán năm 2020 – 2021 sở GD&ĐT Nghệ An gồm 01 trang với 05 bài toán dạng tự luận, thời gian làm bài 150 phút, kỳ thi diễn ra vào thứ Sáu ngày 17 tháng 07 năm 2020, đề thi có đáp án và lời giải chi tiết. Trích dẫn đề thi vào lớp 10 chuyên môn Toán năm 2020 – 2021 sở GD&ĐT Nghệ An : + Trong hình chữ nhất có chiều dài 149 cm, chiều rộng 40 cm cho 2020 điểm phân biệt. Chứng minh rằng tồn tại ít nhất 2 điểm trong số 2020 điểm đã cho mà khoảng cách giữa chúng nhỏ hơn 2 cm. + Tìm tất cả các số nguyên dương x, y và số nguyên tố p thỏa mãn p^x – y^4 = 4. + Chứng minh rằng nếu m, n là hai số tự nhiên thỏa mãn 2m^2 + m = 3n^2 + n thì 2m + 2n + 1 là số chính phương.
Đề thi vào 10 môn Toán năm 2020 - 2021 trường THPT chuyên Lam Sơn - Thanh Hóa
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh đề thi vào 10 môn Toán năm 2020 – 2021 trường THPT chuyên Lam Sơn – Thanh Hóa, đề thi có đáp án và lời giải chi tiết, kỳ thi được diễn ra vào ngày 17 tháng 07 năm 2020. Trích dẫn đề thi vào 10 môn Toán năm 2020 – 2021 trường THPT chuyên Lam Sơn – Thanh Hóa : + Trên một đường tròn người ta lấy 2024 điểm phân biệt, các điểm được tô màu xanh và màu đỏ xen kẽ nhau. Tại mỗi điểm ta ghi một số thực khác 0 và 1 sao cho quy tắc sau được thỏa mãn “số ghi tại điểm màu xanh bằng tổng của hai số ghi màu đỏ kể nó; số ghi màu đỏ bằng tích của hai số ghi tại hai điểm màu xanh kế nó”. Tính tổng của 2024 số đó. [ads] + Cho tam giác ABC nhọn có BAC > 45 độ. Về phía ngoài tam giác ABC dựng các hình vuông ABMN và ACPQ. Đường thẳng AQ cắt đoạn thẳng BM tại E, đường thẳng AN cắt đoạn thẳng CP tại F. a) Chứng minh tứ giác EFQN nội tiếp được một đường tròn. b) Gọi I là trung điểm của đoạn thẳng EF. Chứng minh I là tâm đường trong ngoại tiếp tam giác ABC. c) Đường thẳng MN cắt đường thẳng PQ tại D. Các đường tròn ngoại tiếp tam giác DMQ và DNP cắt nhau tại K với K khác D. Các tiếp tuyến của đường tròn ngoại tiếp tam giác ABC tại B và C cắt nhau tại J. Chứng minh bốn điểm D, A, K, J thẳng hàng. + Chứng minh rằng nếu 2^n = 10a + b với a, b, n là các số tự nhiên thỏa mãn 0 < b < 10 và n > 3 thì ab chia hết cho 6.