Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề đề nghị cuối học kì 1 (HK1) lớp 9 môn Toán năm 2022 2023 trường THCS Đống Đa TP HCM

Nội dung Đề đề nghị cuối học kì 1 (HK1) lớp 9 môn Toán năm 2022 2023 trường THCS Đống Đa TP HCM Bản PDF Sau đây là đề đề nghị cuối học kỳ 1 môn Toán lớp 9 năm học 2022-2023 của trường THCS Đống Đa, TP.HCM. Đề thi này được biên soạn với hình thức 100% tự luận, thời gian làm bài 90 phút (không tính thời gian phát đề). Đề thi bao gồm đáp án, lời giải chi tiết và hướng dẫn chấm điểm để giúp các em tự kiểm tra và cải thiện kiến thức.

1. Bài 1: Bạn Nam đang tiết kiệm tiền để mua một chiếc xe đạp trị giá 2.640.000 đồng. Mỗi ngày, anh ấy tiết kiệm được 20.000 đồng. Hãy xác định hàm số m(t) biểu diễn số tiền anh ấy tiết kiệm được sau t ngày, và sau bao lâu anh ấy có thể mua được chiếc xe đạp.

2. Bài 2: Một máy bay cất cánh từ sân bay với vận tốc trung bình 600 km/giờ, tạo một góc nghiêng 70 độ với mặt đất. Hỏi sau 12 phút, máy bay lên cao được bao nhiêu km so với mặt đất theo phương thẳng đứng.

3. Bài 3: Cửa hàng thể thao có chương trình khuyến mãi cho tết Nguyên Đán. Giảm 10% cho mỗi bộ quần áo thể thao và 20% cho mỗi đôi giày thể thao. Nếu khách hàng có thẻ "Khách hàng thân thiết," họ sẽ được giảm thêm 5% tổng số tiền trên hóa đơn sau khi giảm giá. Hãy tính số tiền bạn An phải trả cho cửa hàng khi mua một bộ quần áo thể thao và một đôi giày thể thao với giá niêm yết.

Đề thi này nhằm giúp các em ôn tập kiến thức đã học trong học kỳ và chuẩn bị cho kỳ thi cuối kỳ 1. Hy vọng rằng các em sẽ cố gắng giải đề thi một cách tự tin và thành công. Chúc các em may mắn!

Nguồn: sytu.vn

Đọc Sách

Đề thi học kì 1 Toán 9 năm 2020 - 2021 phòng GDĐT Đan Phượng - Hà Nội
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi học kì 1 Toán 9 năm học 2020 – 2021 phòng Giáo dục và Đào tạo Đan Phượng, thành phố Hà Nội. Trích dẫn đề thi học kì 1 Toán 9 năm 2020 – 2021 phòng GD&ĐT Đan Phượng – Hà Nội : + Trong mặt phẳng Oxy, cho đường thẳng (d): y x 3. a) Xác định tọa độ các giao điểm A và B của đường thẳng (d) với hai trục Ox, Oy. Vẽ (d) trong mặt phẳng tọa độ Oxy; b) Tính chu vi của tam giác OAB; c) Tìm m để đường thẳng (d’): 2 2 y m x m m 8 2 song song với đường thẳng (d). + Một tàu ngầm ở trên mặt biển (điểm A) lặn xuống theo phương tạo với mặt nước biển một góc 20. Nếu tàu chuyển động theo phương AC lặn xuống đến vị trí C được 300m thì nó ở độ sâu theo phương thẳng đứng BC là bao nhiêu mét? (Kết quả làm tròn đến chữ số thập phân thứ nhất) (Xem hình vẽ mô tả). + Từ điểm A nằm ngoài đường tròn O vẽ hai tiếp tuyến AM và AN với đường tròn O (M N là các tiếp điểm). Gọi H là giao của MN với OA. a) Chứng minh OA MN và 2 OM OH OA. b) Từ M kẻ đường kính MB của đường tròn O. Đường thẳng AB cắt đường tròn O tại C (C khác B). Chứng minh AC AB AH AO. c) Gọi E là giao điểm của đoạn thẳng OA với đường tròn O. Chứng minh EA MA EH MH. d) Qua O kẻ đường thẳng vuông góc với AB và cắt đường thẳng MN tại D. Chứng minh DB MB.
Đề thi học kì 1 Toán 9 năm 2020 - 2021 phòng GDĐT Long Biên - Hà Nội
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi học kì 1 Toán 9 năm học 2020 – 2021 phòng Giáo dục và Đào tạo Long Biên, thành phố Hà Nội. Trích dẫn đề thi học kì 1 Toán 9 năm 2020 – 2021 phòng GD&ĐT Long Biên – Hà Nội : + Cho tam giác ABC có ba góc nhọn, ba đường cao AH BE CK cắt nhau tại M. 1) Chứng minh bốn điểm A E M K cùng thuộc một đường tròn, gọi tâm của đường tròn này là O. 2) Gọi F là trung điểm của BC. Chứng minh: AKAB AE AC và EF là tiếp tuyến của đường tròn 2 AM O. 3) Gọi diện tích các tam giác ABC và HEK lần lượt là ABC S và HEK S: Biết rằng 4 ABC HEK S S chứng minh: 2 2 2 3 4 cos A cos cos C B. + Cho đường thẳng y x 1 d và đường thẳng y m x m 2 1 d với m là tham số m 2. Tìm m để đường thẳng d cắt đường thẳng d tại một điểm có tung độ bằng 2020. + Cho các số thực x y z thỏa mãn x y z 1 1 1 và 2 2 2 x y z 2 3 30. Tìm giá trị nhỏ nhất của biểu thức: P x y z.
Đề thi học kì 1 Toán 9 năm 2020 - 2021 phòng GDĐT Đống Đa - Hà Nội
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi học kì 1 Toán 9 năm học 2020 – 2021 phòng Giáo dục và Đào tạo Đống Đa, thành phố Hà Nội. Trích dẫn đề thi học kì 1 Toán 9 năm 2020 – 2021 phòng GD&ĐT Đống Đa – Hà Nội : + Một vệ tinh nhân tạo địa tĩnh chuyển động theo một quỹ đạo tròn cách bề mặt Trái Đất một khoảng 35786 km, tâm quỹ đạo của vệ tinh trùng với tâm O của Trái Đất. Vệ tinh phát tín hiệu vô tuyến theo một đường thẳng đến một vị trí trên bề mặt trái đất. Hỏi vị trí xa nhất trên bề mặt Trái Đất có thể nhận tín hiệu từ vệ tinh này ở cách vệ tinh một khoảng là bao nhiêu km (ghi kết quả gần đúng chính xác đến hàng đơn vị). Biết rằng Trái Đất được xem như một hình cầu có bán kính khoảng 6400 km. + Cho đường tròn O R đường kính AB. Kẻ tiếp tuyến Ax, lấy điểm P trên Ax AP R. Từ P kẻ tiếp tuyến PM của O R (M là tiếp điểm). a) Chứng minh: bốn điểm A P M O cùng thuộc một đường tròn. b) Chứng minh: BM OP. c) Đường thẳng vuông góc với AB tại O cắt tia BM tại N. Chứng minh: tứ giác OBNP là hình bình hành. d) Giả sử AN cắt OP tại K; PM cắt ON tại I; PN cắt OM tại J. Chứng minh I, J, K thẳng hàng. + Cho đường thẳng d y x 2 3 và đường thẳng d y m x 1 5 (m là tham số m 1) a) Vẽ đường thẳng d trên hệ trục tạo độ Oxy. b) Tìm m để đường thẳng d song song với đường thẳng d’. c) Tìm m để hai đường thẳng d và d’ cắt nhau tại điểm A nằm bên trái trục tung.
Đề thi học kì 1 Toán 9 năm 2020 - 2021 phòng GDĐT Hoàn Kiếm - Hà Nội
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi học kì 1 Toán 9 năm học 2020 – 2021 phòng Giáo dục và Đào tạo Hoàn Kiếm, thành phố Hà Nội. Trích dẫn đề thi học kì 1 Toán 9 năm 2020 – 2021 phòng GD&ĐT Hoàn Kiếm – Hà Nội : + Trong mặt phẳng tọa độ Oxy cho hai đường thẳng: d y x 2 3 và 2 d y m x m 2 1. 1) Vẽ đường thẳng d trong mặt phẳng tọa độ Oxy. 2) Tìm tất cả các giá trị của m để đường thẳng d song song với đường thẳng d’. 3) Tìm tất cả giá trị nguyên của m để hai đường thẳng d và d’ cắt nhau tại điểm có hoành độ là số nguyên. + Cho đường tròn O đường kính AB. Trên tia tiếp tuyến của O tại A, lấy điểm M. Đường thẳng MB cắt đường tròn O tại C. 1) Chứng minh tam giác ABC vuông và 2 MA MC MB. 2) Qua A kẻ đường thẳng vuông góc với OM tại I, đường thẳng này cắt đường tròn O tại D. Chứng minh bốn điểm M C I A cùng thuộc một đường tròn. 3) Chứng minh MD là tiếp tuyến của O và MCD MDB. + Cho a b c là các số thực không âm thỏa mãn a b c 1. Tìm giá trị lớn nhất và giá trị nhỏ nhất của biểu thức P ab c bc a ca b.