Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi thử Toán vào 10 đợt 1 năm 2023 phòng GDĐT Hoàng Mai - Nghệ An

THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi thử môn Toán tuyển sinh vào lớp 10 THPT đợt 1 năm 2023 phòng Giáo dục và Đào tạo UBND thị xã Hoàng Mai, tỉnh Nghệ An; đề thi có đáp án và hướng dẫn chấm điểm. Trích dẫn Đề thi thử Toán vào 10 đợt 1 năm 2023 phòng GD&ĐT Hoàng Mai – Nghệ An : + Cho phương trình: x2 – 7x + 9 = 0 có hai nghiệm dương phân biệt. Không giải phương trình, hãy tính: C. + Giải bài toán sau bằng cách lập phương trình hoặc hệ phương trình: Hưởng ứng phong trào lập thành tích chào mừng 10 năm thành lập thị xã Hoàng Mai, Thị Đoàn đã phối hợp với một trường THCS A trên địa bàn, chọn 56 đoàn viên của lớp 9 tham gia lao động trồng cây xanh. Biết mỗi đoàn viên nam trồng 3 cây, mỗi đoàn viên nữ trồng 2 cây với tổng số cây trồng được là 134 cây. Tính số đoàn viên nam, số đoàn viên nữ lớp 9 của trường THCS A đã tham gia lao động trồng cây. + Cho tam giác ABC nhọn nội tiếp (O), hai đường cao BD và CE của tam giác ABC cắt nhau tại H. Vẽ DK vuông góc với AB (K thuộc AB), gọi F là trung điểm của ED, tia BF cắt (O) tại I (khác B). a) Chứng minh tứ giác BEDC nội tiếp b) Chứng minh rằng BK.BA = BF.BI c) Chứng minh rằng, hai đường thẳng AH và ID cắt nhau tại một điểm nằm trên (O).

Nguồn: toanmath.com

Đọc Sách

Đề tuyển sinh lớp 10 môn Toán (không chuyên) năm 2023 - 2024 sở GDĐT Bạc Liêu
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh đề thi tuyển sinh vào lớp 10 THPT môn Toán (không chuyên) năm học 2023 – 2024 sở Giáo dục và Đào tạo tỉnh Bạc Liêu; kỳ thi được diễn ra vào ngày 31 tháng 05 năm 2023. Trích dẫn Đề tuyển sinh lớp 10 môn Toán (không chuyên) năm 2023 – 2024 sở GD&ĐT Bạc Liêu : + Tìm hệ số a để đồ thị hàm số y = ax2 đi qua điểm M(-1;2). Vẽ đồ thị của hàm số y = ax2 với giá trị a vừa tìm được. + Cho phương trình bậc hai x2 – 2x + m – 2 = 0 (1) với m là tham số. a) Xác định các hệ số a, b, c của phương trình (1). b) Giải phương trình (1) khi m = -1. c) Tìm giá trị của m để phương trình (1) có hai nghiệm x1, x2 thỏa mãn: 3(x1² + x2²) + x1²x2² = 11. + Trên đường tròn tâm O, đường kính AB = 2R, lấy hai điểm C, D sao cho CD vuông góc với B tại H (H thuộc đoạn OA, H khác O và A). Gọi M là điểm trên đoạn CD (M khác C và D, CM > DM), E là giao điểm của AM với đường tròn (O) (E khác A), N là giao điểm của hai đường thẳng BE và CD. a) Chứng minh tứ giác MEBH nội tiếp dường tròn. b) Chứng minh: NC.ND = NB.NE. c) Khi AC = R, xác định vị trí của điểm M để 2AM + AE đạt giá trị nhỏ nhất.
Đề tuyển sinh lớp 10 môn Toán (chuyên) năm 2023 trường THPT chuyên ĐHSP Hà Nội
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh đề thi tuyển sinh vào lớp 10 môn Toán (chuyên) năm 2023 trường THPT chuyên Đại học Sư Phạm Hà Nội, thành phố Hà Nội; đề thi dùng riêng cho thí sinh thi vào lớp chuyên Toán và chuyên Tin học (vòng 2), có đáp án và lời giải chi tiết. Trích dẫn Đề tuyển sinh lớp 10 môn Toán (chuyên) năm 2023 trường THPT chuyên ĐHSP Hà Nội : + Cho tam giác ABC. Đường tròn (I) nội tiếp tam giác ABC lần lượt tiếp xúc với các cạnh BC, CA, AB tại các điểm D, E, F. Hai đường thẳng MG, NE cắt nhau tại điểm P. Chứng minh rằng: a) EG song song với MN. b) Điểm P thuộc đường tròn (I). + Bảy lục giác đều được sắp xếp và tô màu bằng hai màu trắng, đen như ở Hình 1. Mỗi lần cho phép chọn ra một lục giác đều, đổi màu của lục giác đó và của tất cả các lục giác đều chung cạnh với lục giác đó (trắng thành đen và đen thành trắng). Chứng minh rằng dù có thực hiện cách làm trên bao nhiêu lần đi nữa, cũng không thể nhận được các lục giác đều được ô màu như ở Hình 2. + Chứng minh rằng tồn tại số nguyên dương n > 102023 sao cho tổng tất cả các số nguyên tố nhỏ hơn n là một số nguyên tố cùng nhau với n.
Đề tuyển sinh lớp 10 môn Toán (chung) năm 2023 trường THPT chuyên ĐHSP Hà Nội
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh đề thi tuyển sinh vào lớp 10 môn Toán (chung) năm 2023 trường THPT chuyên Đại học Sư Phạm Hà Nội, thành phố Hà Nội; đề thi dùng cho mọi thí sinh (vòng 1), có đáp án và lời giải chi tiết. Trích dẫn Đề tuyển sinh lớp 10 môn Toán (chung) năm 2023 trường THPT chuyên ĐHSP Hà Nội : + Một khay nước có nhiệt độ 125◦F khi bắt đầu cho vào tủ đá. Ở trong tủ đá, cứ sau mỗi giờ, nhiệt độ khay nước lại giảm đi 20%. Hỏi sau bao nhiêu giờ, nhiệt độ khay nước chỉ còn là 64◦F. + Cho hình bình hành ABCD có ABC = 120◦ và BC = 2AB. Dựng đường tròn (O) có đường kính AC. Gọi E, F lần lượt là các giao điểm thứ hai của AB, AD với đường tròn (O). Đường thẳng EF lần lượt cắt các đường thẳng BC, BD tại H, S. Chứng minh a) Tam giác ABD là tam giác vuông. b) Tứ giác OBEH là tứ giác nội tiếp. c) SC là tiếp tuyến của dường tròn (O). + Trên bảng ta viết đa thức P(x) = ax2 + bx + c (a khác 0). Ta viết lên bảng đa thức mới P1(x) = P(x + 1) + P(x − 1)2 rồi xóa đi đa thức P(x). Ta viết lên bảng đa thức mới P2(x) = P1(x + 1) + P1(x − 1)2 rồi xóa đi đa thức P1(x). Ta cứ tiếp tục làm như thế nhiều lần. Chứng minh rằng nếu cứ làm như vậy nhiều lần thì đến một lúc nào đó ta nhận được một đa thức không có nghiệm.
Đề tuyển sinh lớp 10 môn Toán (chuyên) năm 2023 - 2024 sở GDĐT Bạc Liêu
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh đề thi tuyển sinh vào lớp 10 THPT môn Toán (chuyên) năm học 2023 – 2024 sở Giáo dục và Đào tạo tỉnh Bạc Liêu; kỳ thi được diễn ra vào ngày 31 tháng 05 năm 2023. Trích dẫn Đề tuyển sinh lớp 10 môn Toán (chuyên) năm 2023 – 2024 sở GD&ĐT Bạc Liêu : + Cho biểu thức H = n2 – n – 5. Tìm tất cả các số nguyên dương n để H là một số chính phương. Tìm các số nguyên x, y sao cho: x(x + y)2 = y – 1. + Cho tam giác ABC đều nội tiếp đường tròn (O). H là trung điểm của BC; M là điểm bất kì thuộc đoạn thẳng BH (M khác B; M khác H). Lấy điểm N thuộc đoạn thẳng CA sao cho CN = BM. Gọi I là trung điểm của MN. a) Chứng minh bốn điểm O, M, H, I cùng thuộc một đường tròn. b) Gọi K là giao điểm của OI và AB. Chứng minh MNK là tam giác đều. c) Xác định vị trí của điểm M để IAB có chu vi nhỏ nhất. + Cho đường tròn (O;R) có dây BC cố định (BC < 2R) và điểm A trên cung lớn BC (A khác B; A khác C; A không là điểm chính giữa cung lớn BC). Gọi H là hình chiếu của A trên BC; E và F lần lượt là hình chiếu của B và C trên đường kính AK. a) Chứng minh HE vuông góc AC. b) Chứng minh SABC/AB.BC.AC = 1/4R. c) Chứng minh tâm đường tròn ngoại tiếp HEF là một điểm cố định khi điểm A di động trên cung lớn BC.