Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Chuyên đề phương trình đại số - Trịnh Bình

Tài liệu chuyên đề phương trình đại số gồm 56 trang được tổng hợp bởi tác giả Trịnh Bình, hướng dẫn phương pháp giải các bài toán phương trình đại số, giúp học sinh học tốt chương trình Đại số lớp 9 và ôn tập chuẩn bị cho kỳ thi tuyển sinh vào lớp 10 môn Toán. CHỦ ĐỀ 1 . PHƯƠNG TRÌNH ĐA THỨC BẬC CAO. Để giải phương trình đa thức bậc cao chúng ta thường chuyển phương trình đó về dạng phương trình tích. Phương trình bậc 3: Thông thường để giải được phương trình bậc 3 chúng ta phải tìm được một nghiệm của phương trình, sau đó phân tích thành nhân tử và chuyển về giải phương trình bậc 2. Phương trình bậc 4: Để giải phương trình bậc 4 chúng ta thường nhẩm một nghiệm và phân tích phương trình bậc 4 thành tích của một đa thức bậc 3 và đa thức bậc nhất sau đó dùng các phương pháp để giải phương trình bậc 3 hoặc phân tích thành tích hai tam thức bậc 2, hoặc đặt ẩn phụ chuyển về giải phương trình bậc 2. + Dạng 1. Phương trình trùng phương: $a{x^4} + b{x^2} + c = 0$ $(a \ne 0).$ + Dạng 2. Phương trình có dạng: ${(x + m)^4} + {(x + n)^4} = p$ $(p > 0).$ + Dạng 3. Phương trình có dạng: $(x + a)(x + b)(x + c)(x + d) = e$ trong đó $a + b = c + d.$ + Dạng 4. Phương trình có dạng: $\left( {a{x^2} + {b_1}x + c} \right)\left( {a{x^2} + {b_2}x + c} \right) = m{x^2}.$ + Dạng 5. Phương trình có dạng: $(x + a)(x + b)(x + c)(x + d) = e{x^2}$ trong đó $ab = cd.$ + Dạng 6. Phương trình có dạng: ${a_1}{\left( {b{x^2} + {c_1}x + d} \right)^2}$ $ + {a_2}\left( {b{x^2} + {c_2}x + d} \right)$ $ = A{x^2}.$ + Dạng 7. Phương trình có dạng: $a{x^4} + b{x^3} + c{x^2} \pm bx + a = 0.$ + Dạng 8. Phương trình có dạng: $a{x^4} + b{x^3} + c{x^2} \pm kbx + {k^2}a = 0$ $(k > 0).$ Phương trình cao hơn bậc 4: Đối với các phương trình bậc cao hơn 4 phương pháp chung là dùng cách đưa về dạng phương trình tích hoặc đặt ẩn phụ để đưa về giải các phương trình bậc thấp hoặc với nhiều bài toán chúng ta nên lưu tâm tới việc có thể sử dụng phương pháp đánh giá để giải toán. [ads] CHỦ ĐỀ 2 . PHƯƠNG TRÌNH CHỨA ẨN Ở MẪU THỨC. Bước 1: Tìm điều kiện xác định của phương trình (tức là tìm giá trị của ẩn làm tất cả các mẫu thức của phương trình khác 0). Bước 2: Quy đồng mẫu hai vế của phương trình rồi khử mẫu. Bước 3: Giải phương trình vừa nhận được. Bước 4: Trong các giá trị tìm được ở bước 3, các giá trị thỏa mãn điều kiện xác định chính là nghiệm của phương trình đã cho. Một số dạng phương trình phân thức thường gặp: + Dạng 1. Phương trình có dạng: $\frac{{{a_1}}}{{x + {b_1}}} + \frac{{{a_2}}}{{x + {b_2}}} + \ldots + \frac{{{a_n}}}{{x + {b_n}}} = A.$ + Dạng 2. Phương trình có dạng: $\frac{{{a_1}x + {b_1}}}{{x + {c_1}}} + \frac{{{a_2}x + {b_2}}}{{x + {c_2}}} + \ldots + \frac{{{a_n}x + {b_n}}}{{x + {c_n}}} = A.$ + Dạng 3. Phương trình có dạng: $\frac{{mx}}{{a{x^2} + {b_1}x + c}} + \frac{{nx}}{{a{x^2} + {b_2}x + c}} = p$, $\frac{{a{x^2} + {b_1}x + c}}{{a{x^2} + {b_2}x + c}} + \frac{{a{x^2} + {d_1}x + c}}{{a{x^2} + {d_2}x + c}} = 0$, $\frac{{a{x^2} + {b_1}x + c}}{{a{x^2} + {b_2}x + c}} + \frac{{px}}{{a{x^2} + dx + c}} = 0.$ Dạng 4. Phương trình có dạng: ${x^2} + {\left( {\frac{{ax}}{{x + a}}} \right)^2} = b$ với $a \ne 0$, $x \ne – a.$ Dạng 5. Sử dụng phương ph{p đ{nh gi{ để giải phương trình chứa phân thức CHỦ ĐỀ 3 . PHƯƠNG TRÌNH CHỨA ẨN TRONG DẤU GIÁ TRỊ TUYỆT ĐỐI. Để giải phương trình có chứa ẩn trong dấu giá trị tuyệt đối cần khử dấu giá trị tuyệt đối. Ta cần nhớ giá trị tuyệt đối của một biểu thức bằng chính nó nếu nó có giá trị không âm, bằng số đối của nó nếu nó có giá trị âm. Do đó để bỏ dấu giá trị tuyệt đối ta phải xét các giá trị làm biểu thức âm hoặc không âm.

Nguồn: toanmath.com

Đọc Sách

Phân dạng các bài toán trong đề tuyển sinh lớp 10 môn Toán (2022 - 2023)
Tài liệu gồm 236 trang, được biên soạn bởi quý thầy, cô giáo nhóm Word – Giải – Tách Chuyên Đề Vào 10 Môn Toán, phân dạng và hướng dẫn giải chi tiết các bài toán trong đề thi tuyển sinh vào lớp 10 môn Toán năm học 2022 – 2023. Chuyên đề 1. Các bài toán về chủ đề: Căn bậc hai. Chuyên đề 2. Các bài toán về chủ đề: Hàm số. Chuyên đề 3. Các bài toán về chủ đề: Phương trình. Chuyên đề 4. Các bài toán về chủ đề: Hệ phương trình. Chuyên đề 5. Các bài toán về chủ đề: Giải bài toán bằng cách lập phương trình – hệ phương trình. Chuyên đề 6. Các bài toán về chủ đề: Bất đẳng thức. Chuyên đề 7. Các bài toán về chủ đề: Số học. Chuyên đề 8. Các bài toán về chủ đề: Hình học. Chuyên đề 9. Các bài toán hình thức: Trắc nghiệm.
Chùm bài toán tiếp tuyến - cát tuyến ôn thi vào lớp 10 môn Toán
Tài liệu gồm 44 trang, được biên soạn bởi thầy giáo Nguyễn Chí Thành, tuyển chọn 114 bài toán tiếp tuyến – cát tuyến ôn thi vào lớp 10 môn Toán, đây là dạng toán phổ biến trong các đề thi tuyển sinh lớp 10 môn Toán. Trích dẫn tài liệu chùm bài toán tiếp tuyến – cát tuyến ôn thi vào lớp 10 môn Toán: + Cho O R và điểm M nằm ngoài đường tròn. Kẻ tiếp tuyến MB với đường tròn dây BC vuông góc OM tại H. + Từ M kẻ cát tuyến MDD (tia MD nằm giữa tia MB và MO) gọi D1 là trung điểm DD OD BC D 1 2. Chứng minh các điểm 1 O C M B D cùng nằm trên một đường tròn, các điểm 1 2 M H D D cùng nằm trên một đường tròn. Chỉ ra các điểm 1 O C M B D đều cách đều trung điểm của OM (dựa vào tính chất trung tuyến tam giác vuông) hoặc các đỉnh 1 C B D đều nhìn MO dưới một góc vuông. Chỉ ra các điểm 1 2 M H D D đều cách đều trung điểm của D M2 (dựa vào tính chất trung tuyến tam giác vuông) hoặc 0 2 1 2 MHD MD D 90. + Đề bài có thể thay đổi thành: Chứng minh đường tròn ngoại tiếp HD D hoặc D OD luôn đi qua một điểm cố định hoặc tâm đường tròn ngoại tiếp HD D luôn chạy trên một đường thẳng cố định. Các em sẽ thấy, tứ giác OHDD là tứ giác nội tiếp nên đường tròn ngoại tiếp tam giác HD D luôn đi qua điểm cố định O và đường tròn ngoại tiếp tam giác OD D luôn đi qua điểm cố định H. Vì OHDD là tứ giác nội tiếp nên tâm đường tròn ngoại tiếp HD D luôn nằm trên đường trung trực đoạn OH.
102 bài toán bất đẳng thức và giá trị lớn nhất, giá trị nhỏ nhất chọn lọc
Tài liệu gồm 58 trang, được tổng hợp bởi thầy giáo Cù Minh Quảng, tuyển tập 102 bài toán bất đẳng thức và giá trị lớn nhất, giá trị nhỏ nhất chọn lọc, có đáp án và lời giải chi tiết, giúp học sinh ôn tập để chuẩn bị cho kỳ thi chọn học sinh giỏi Toán bậc THCS các cấp và ôn thi vào lớp 10 môn Toán.
Phương trình nghiệm nguyên chọn lọc
Tài liệu gồm 218 trang, tuyển tập các chủ đề phương trình nghiệm nguyên chọn lọc, giúp học sinh ôn tập để chuẩn bị cho kỳ thi chọn học sinh giỏi Toán bậc THCS các cấp và ôn thi vào lớp 10 môn Toán. MỤC LỤC : Phần 1 MỘT SỐ PHƯƠNG PHÁP GIẢI PHƯƠNG TRÌNH NGHIỆM NGUYÊN 1. 1 PHƯƠNG PHÁP XÉT TÍNH CHIA HẾT 2. A Phương pháp phát hiện tính chia hết của một ẩn 2. B Phương pháp đưa về phương trình ước số 2. C Phương pháp biểu thị một ẩn theo ẩn còn lại rồi dùng tính chia hết 3. D Phương pháp xét số dư của từng vế 4. 2 PHƯƠNG PHÁP DÙNG BẤT ĐẲNG THỨC 8. A Phương pháp sắp thứ tự các ẩn 8. B Phương pháp xét từng khoảng giá trị của ẩn 9. C Phương pháp chỉ ra nghiệm nguyên 10. D Phương pháp sử dụng điều kiện để phương trình bậc hai có nghiệm 10. 3 PHƯƠNG PHÁP DÙNG TÍNH CHẤT CỦA SỐ CHÍNH PHƯƠNG 17. A Sử dụng tính chất về chia hết của số chính phương 17. B Tạo ra bình phương đúng 17. C Tạo ra tổng các số chính phương 18. D Xét các số chính phương liên tiếp 18. E Sử dụng điều kiện biệt số ∆ là số chính phương 19. F Sử dụng tính chất: 20. G Sử dụng tính chất: 21. 4 PHƯƠNG PHÁP LÙI VÔ HẠN, NGUYÊN TẮC CỰC HẠN 28. Phần 2 MỘT SỐ DẠNG PHƯƠNG TRÌNH NGHIỆM NGUYÊN 32. 1 PHƯƠNG TRÌNH MỘT ẨN 32. 2 PHƯƠNG TRÌNH BẬC NHẤT VỚI HAI ẨN 35. A Cách giải phương trình bậc nhất hai ẩn ax + by = c với nghiệm nguyên (a, b, c thuộc Z) 36. 3 PHƯƠNG TRÌNH BẬC HAI VỚI HAI ẨN 39. 4 PHƯƠNG TRÌNH BẬC BA HAI ẨN 57. 5 PHƯƠNG TRÌNH BẬC BỐN VỚI HAI ẨN 66. 6 PHƯƠNG TRÌNH ĐA THỨC VỚI BA ẨN TRỞ LÊN 76. 7 PHƯƠNG TRÌNH PHÂN THỨC 85. 8 PHƯƠNG TRÌNH MŨ 93. 9 PHƯƠNG TRÌNH VÔ TỈ 104. 10 HỆ PHƯƠNG TRÌNH VỚI NGHIỆM NGUYÊN 114. 11 TÌM ĐIỀU KIỆN ĐỂ PHƯƠNG TRÌNH CÓ NGHIỆM NGUYÊN 118. Phần 3 BÀI TOÁN ĐƯA VỀ GIẢI PHƯƠNG TRÌNH NGHIỆM NGUYÊN 125. 1 BÀI TOÁN VỀ SỐ TỰ NHIÊN VÀ CÁC CHỮ SỐ 125. 2 BÀI TOÁN VỀ TÍNH CHIA HẾT VÀ SỐ NGUYÊN TỐ 138. 3 BÀI TOÁN THỰC TẾ 152. Phần 4 PHƯƠNG TRÌNH NGHIỆM NGUYÊN MANG TÊN CÁC NHÀ TOÁN HỌC 159. 1 THUẬT TOÁN EUCLIDE VÀ PHƯƠNG PHÁP TÌM NGHIỆM RIÊNG ĐỂ GIẢI PHƯƠNG TRÌNH BẬC NHẤT HAI ẨN 159. A Mở đầu 159. B Cách giải tổng quát 160. C Ví dụ 161. D Cách tìm một nghiệm riêng của phương trình ax + by = c 161. 2 PHƯƠNG TRÌNH PELL 166. A Mở đầu 166. B Phương trình Pell 166. 3 PHƯƠNG TRÌNH PYTHAGORE 170. A Mở đầu 170. 4 PHƯƠNG TRÌNH FERMAT 175. A Định lí nhỏ Fermat 175. B Định lí lớn Fermat 175. C Lịch sử về chứng minh định lí lớn Fermat 176. D Chứng minh định lí lớn Fermat với n=4 177. 5 PHƯƠNG TRÌNH DIONPHANTE 180. Phần 5 NHỮNG PHƯƠNG TRÌNH NGHIỆM NGUYÊN CHƯA CÓ LỜI GIẢI 182. 1 CÒN NHIỀU PHƯƠNG TRÌNH NGHIỆM NGUYÊN CHƯA GIẢI ĐƯỢC 182. A Phương trình bậc ba với hai ẩn 182. B Phương trình bậc bốn với hai ẩn 183. C Phương trình bậc cao với hai ẩn 183. D Phương trình với ba ẩn trở lên 184. 2 NHỮNG BƯỚC ĐỘT PHÁ 185. Phần 6 PHƯƠNG TRÌNH NGHIỆM NGUYÊN QUA CÁC KỲ THI 187. 1 Trong các đề thi vào lớp 10 187. 2 Trong các đề thi học sinh giỏi quốc gia và quốc tế 209.