Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề tuyển sinh môn Toán (chuyên) năm 2020 2021 sở GD ĐT Phú Yên

Nội dung Đề tuyển sinh môn Toán (chuyên) năm 2020 2021 sở GD ĐT Phú Yên Bản PDF - Nội dung bài viết Đề tuyển sinh môn Toán (chuyên) năm 2020-2021 của sở GD&ĐT Phú Yên Đề tuyển sinh môn Toán (chuyên) năm 2020-2021 của sở GD&ĐT Phú Yên Đề tuyển sinh lớp 10 môn Toán (chuyên) năm 2020 – 2021 của sở GD&ĐT Phú Yên bao gồm 01 trang với 05 bài toán dạng tự luận. Thời gian làm bài thi là 150 phút, kỳ thi sẽ diễn ra vào ngày ... tháng 07 năm 2020. Trích dẫn đề tuyển sinh lớp 10 môn Toán (chuyên) năm 2020 – 2021 của sở GD&ĐT Phú Yên: 1. Cho đường tròn (O; R), lấy điểm A nằm ngoài đường tròn sao cho OA = 2R. Từ A kẻ hai tiếp tuyến AM, AN (M, N là các tiếp điểm) và cát tuyến ABC (AB < AC). Gọi I là trung điểm của BC, T là giao điểm của NI với (O) (T khác N). - Chứng minh rằng tam giác AMN đều. - Chứng minh rằng MT // AC. - Tiếp tuyến của (O) tại B, C cắt nhau ở K. Chứng minh rằng ba điểm K, M, N thẳng hàng. 2. Tìm cặp số (x; y) thỏa mãn phương trình x2 + y2 + 8x + y − 2xy + 3 = 0 sao cho y đạt giá trị lớn nhất. 3. Cho hình vuông ABCD. Gọi E, F lần lượt là trung điểm của CD, AD và G là giao điểm của AE và BF. - Chứng minh rằng FED = FGD. - Gọi H là điểm đối xứng với F qua G, I là giao điểm của BD và EF. Đường thẳng qua D, song song với BF cắt HI tại K. Chứng minh rằng K là trực tâm của tam giác G. Các bài toán trong đề tuyển sinh này đều đòi hỏi học sinh có kiến thức sâu về các khái niệm toán học cơ bản như tam giác, đường tròn, hình vuông, và kỹ năng suy luận, chứng minh logic. Đây là cơ hội để các thí sinh thể hiện năng lực và sự am hiểu vững chắc về môn Toán.

Nguồn: sytu.vn

Đọc Sách

Đề tuyển sinh lớp 10 môn Toán năm 2023 - 2024 sở GDĐT Ninh Thuận
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh đề chính thức kỳ thi tuyển sinh vào lớp 10 THPT môn Toán năm học 2023 – 2024 sở Giáo dục và Đào tạo tỉnh Ninh Thuận; kỳ thi được diễn ra vào ngày 03 tháng 06 năm 2023. Trích dẫn Đề tuyển sinh lớp 10 môn Toán năm 2023 – 2024 sở GD&ĐT Ninh Thuận : + Cho Parabol (P): y = -x2 và đường thẳng (d): y = x – 2. a) Vẽ (P) và (d) trên cùng một hệ trục tọa độ. b) Tìm tọa độ giao điểm của (P) và (d) bằng phép toán. + Gia đình An dự định đi du lịch tại Nha Trang và Huế trong 7 ngày. Biết rằng chi phí trung bình mỗi ngày tại Nha Trang là 2 triệu đồng, còn tại Huế là 3 triệu đồng. Tìm số ngày nghỉ dự định của gia đình An tại mỗi địa điểm, biết số tiền mà họ phải chi cho toàn bộ chuyến đi là 18 triệu đồng. + Cho đường tròn (O) tâm O bán kính R và điểm A nằm ngoài đường tròn. Các tiếp tuyến với đường tròn kẻ từ A tiếp xúc với đường tròn tại B, C. Gọi M là điểm thuộc cung lớn BC. Từ M kẻ MH vuông góc BC, MK vuông góc AC, MI vuông góc AB. a) Chứng minh tứ giác MIBH nội tiếp. b) Giả sử AB = 2R. Tính diện tích tứ giác ABOC. c) Chứng minh MI.MK = MH2.
Đề tuyển sinh lớp 10 môn Toán (chuyên) năm 2023 - 2024 sở GDĐT Hải Dương
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh đề chính thức kỳ thi tuyển sinh vào lớp 10 Trung học Phổ thông môn Toán (chuyên) năm học 2023 – 2024 sở Giáo dục và Đào tạo tỉnh Hải Dương; kỳ thi được diễn ra vào ngày 03 tháng 06 năm 2023. Trích dẫn Đề tuyển sinh lớp 10 môn Toán (chuyên) năm 2023 – 2024 sở GD&ĐT Hải Dương : + Tìm tất cả các số nguyên tố p lẻ sao cho 2p4 – p2 + 16 là số chính phương. + Tìm nghiệm nguyên của phương trình 6×2 + 7xy + 2y2 + x + y – 2 = 0. + Cho tam giác đều ABC nội tiếp đường tròn (O), điểm E thuộc cung nhỏ AB của đường tròn (O) (E khác A, E khác B). Đường thẳng AE cắt các tiếp tuyến tại B, C của đường tròn (O) lần lượt tại M, N. a) Chứng minh rằng MB.NC = AB2. b) Gọi F là giao điểm của MC và BN, H là trung điểm BC. Chứng minh rằng ba điểm E, F, H thẳng hàng.
Đề tuyển sinh lớp 10 môn Toán (chung) năm 2023 trường THPT chuyên KHTN - Hà Nội
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh đề chính thức kỳ thi tuyển sinh vào lớp 10 môn Toán (chung) năm 2023 trường THPT chuyên KHTN, Đại học Khoa học Tự nhiên, Đại học Quốc gia Hà Nội; đề thi có đáp án và lời giải chi tiết (đáp án và lời giải được thực hiện bởi CLB Toán A1: Nguyễn Nhất Huy – Trần Nguyễn Đức Nhật – Phan Anh Quân – Trịnh Huy Vũ). Trích dẫn Đề tuyển sinh lớp 10 môn Toán (chung) năm 2023 trường THPT chuyên KHTN – Hà Nội : + Giả sử n là số nguyên sao cho 3n3 – 1011 chia hết cho 1008. Chứng minh rằng n – 1 chia hết cho 48. + Cho hai đường tròn (O) và (O’) cố định cắt nhau tại A và B sao cho O nằm ngoài (O’) và O’ nằm ngoài (O). Trên đường tròn (O) lấy điểm P di chuyển sao cho P nằm trong đường tròn (O’). Đường thẳng AP cắt (O’) tại C khác A. 1) Chứng minh rằng hai tam giác OBP và O’BC đồng dạng. 2) Gọi Q là giao điểm của hai đường thẳng OP và O’C. Chứng minh rằng QBC + ABP = 90°. 3) Lấy điểm D thuộc (O) sao cho AD vuông góc O’C. Chứng minh rằng trung điểm của đoạn thẳng DQ luôn nằm trên một đường tròn cố định khi P thay đổi. + Giả sử A là tập hợp con của tập hợp gồm 30 số tự nhiên đầu tiên {0, 1, 2, 3, …, 29} sao cho với k nguyên bất kỳ, a, b thuộc A bất kỳ (có thể a = b) thì a + b + 30k không là tích của hai số nguyên liên tiếp. Chứng minh rằng số phần tử của tập hợp A nhỏ hơn hoặc bằng 10.
Đề tuyển sinh lớp 10 môn Toán (chuyên) năm 2023 - 2024 trường chuyên Quốc học Huế
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh đề chính thức kỳ thi tuyển sinh vào lớp 10 môn Toán (chuyên Toán và chuyên Tin học) năm học 2023 – 2024 trường THPT chuyên Quốc học Huế, tỉnh Thừa Thiên Huế; kỳ thi được diễn ra vào 04/06/2023. Trích dẫn Đề tuyển sinh lớp 10 môn Toán (chuyên) năm 2023 – 2024 trường chuyên Quốc học Huế : + Cho tam giác nhọn ABC (AB < AC) nội tiếp đường tròn (O), có đường cao AD và trực tâm H. Gọi E là điểm trên (O) sao cho hai dây AE và BC song song với nhau. Đường thẳng EH cắt (O) tại điểm thứ hai là F và cắt đường trung trực của BC tại M. a) Chứng minh M là trung điểm của EH và AMOF là tứ giác nội tiếp. b) Chứng minh OFA + ODF = 180. c) Gọi K là điểm đối xứng với A qua O. Tiếp tuyến của (O) tại A cắt đường thẳng FK tại T. Chứng minh hai đường thẳng TH và BC song song với nhau. + Trong mặt phẳng tọa độ Oxy, cho đường thẳng (d): y = (m – 2)x + 3 và parabol (P): y = x2. Chứng minh với mọi m, (d) luôn cắt (P) tại hai điểm phân biệt A và B nằm khác phía đối với trục tung. Gọi C và D lần lượt là hình chiếu vuông góc của A và B trên trục hoành. Tìm tất cả các giá trị của m để hai tam giác AOC và BOD có diện tích bằng nhau. + Trong một đường tròn (O) có bán kính bằng 46 cm, cho 2023 điểm bất kỳ. Chứng minh tồn tại vô số hình tròn có bán kính bằng 1 cm nằm trong đường tròn (O) và không chứa bất kỳ điểm nào trong 2023 điểm đã cho.