Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề học sinh giỏi cấp tỉnh Toán THCS năm 2022 - 2023 sở GDĐT Đắk Nông

THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi chọn học sinh giỏi cấp tỉnh môn Toán Trung học Cơ sở năm học 2022 – 2023 sở Giáo dục và Đào tạo tỉnh Đắk Nông; kỳ thi được diễn ra vào thứ Năm ngày 09 tháng 03 năm 2023. Trích dẫn Đề học sinh giỏi cấp tỉnh Toán THCS năm 2022 – 2023 sở GD&ĐT Đắk Nông : + Một xe tải có chiều rộng là 2,4 m chiều cao là 2,5 m muốn đi qua một cái cổng hình Parabol (Hình minh họa). Biết khoảng cách giữa hai chân cổng là 4m và khoảng cách từ đỉnh cổng tới mỗi chân cổng là 25 m (bỏ qua độ dày của cổng). a) Trong mặt phẳng tọa độ Oxy gọi Parabol (P): y = ax2 với a < 0 là hình biểu diễn cổng mà xe tải muốn đi qua. Chứng minh a = −1. b) Hỏi xe tải có đi qua cổng được không? Tại sao? + Một cái tháp được xây dựng bên bờ một con sông, từ một điểm đối diện với tháp ngay bờ bên kia người ta nhìn thấy đỉnh tháp với góc nâng 60°. Từ một điểm khác cách điểm ban đầu 20m người ta cũng nhìn thấy đỉnh tháp với góc nâng 30 (Hình minh họa). Tính chiều cao của tháp và bề rộng của con sông. + Cho tam giác ABC có ba góc nhọn (AB < AC) nội tiếp đường tròn tâm O bán kính R. Vẽ đường tròn tâm K đường kính BC, cắt cạnh AB và AC lần lượt tại điểm F và E. Gọi H là giao điểm của BE và CF. a) Chứng minh: AF.AB = AE.AC. b) Từ A vẽ các tiếp tuyến AM và AN với đường tròn (K) (với M, N là hai tiếp điểm; N thuộc cung EC). Chứng minh: ba điểm M, H, N thẳng hàng.

Nguồn: toanmath.com

Đọc Sách

Đề học sinh giỏi Toán 9 năm 2022 - 2023 phòng GDĐT Vũng Tàu - BR VT
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi chọn học sinh giỏi cấp thành phố môn Toán 9 năm học 2022 – 2023 phòng Giáo dục và Đào tạo UBND thành phố Vũng Tàu, tỉnh Bà Rịa – Vũng Tàu. Trích dẫn Đề học sinh giỏi Toán 9 năm 2022 – 2023 phòng GD&ĐT Vũng Tàu – BR VT : + Xét các số thực dương a, b thay đổi thỏa mãn a + b = ab. Tìm giá trị nhỏ nhất của biểu thức P = 7/4.a + 5/4.b + 4/a + 2/b. + Cho tam giác ABC nhọn (AB < AC) nội tiếp đường tròn (O). Kẻ đường cao AD của tam giác ABC và đường kính AK của đường tròn (O). Gọi H là trực tâm tam giác ABC và M là trung điểm đoạn thẳng BC. Tia MH cắt (O) tại E, tia ED cắt (O) tại S. 1. Chứng minh ba điểm H, M, K thẳng hàng và tứ giác AMDE nội tiếp. 2. Chứng minh AB/AC = SB/SC. 3. Tia SM cắt (O) tại T. Chứng minh tứ giác ABCT là hình thang cân. 4. Chứng minh các đường thẳng DT, AM, HO đồng quy. + Cho 2024 phân số gồm 1/2024; 2/2024 … 2024/2024. Mỗi lần thực hiện ta xoá đi hai số a; b bất kỳ trong dãy trên và thay vào đó số a + b – 4ab. Cứ làm như vậy đến khi còn duy nhất một số. Hãy tìm số đó.
Đề học sinh giỏi cấp tỉnh Toán 9 năm 2022 - 2023 sở GDĐT Hà Nam
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi chọn học sinh giỏi cấp tỉnh môn Toán 9 THCS năm học 2022 – 2023 sở Giáo dục và Đào tạo UBND tỉnh Hà Nam; đề thi hình thức tự luận với 06 bài toán, thời gian làm bài 150 phút; đề thi có đáp án, lời giải chi tiết và bảng hướng dẫn chấm điểm. Trích dẫn Đề học sinh giỏi cấp tỉnh Toán 9 năm 2022 – 2023 sở GD&ĐT Hà Nam : + Cho parabol 1 2 2 Py x và hai điểm A B 2 2 4 8 nằm trên (P). Gọi M là điểm thay đổi trên (P) và có hoành độ là m m 2 4. Tìm m để tam giác ABM có diện tích lớn nhất. + Cho đường tròn (O;R) đường kính AB. Gọi C là điểm thỏa mãn tam giác ABC nhọn. Các đường thẳng CA CB cắt đường tròn (O) tại điểm thứ hai tương ứng là D E. Trên cung AB của (O) không chứa D lấy điểm F (0 FA FB). Đường thẳng CF cắt AB tại M cắt đường tròn O tại N (N không trùng với F) và cắt đường tròn (O’) ngoại tiếp tam giác CDE tại P (P không trùng với C). a) Giả sử 0 ACB 60 tính DE theo R. b) Chứng minh CN CF CP CM. c) Gọi I H theo thứ tự là hình chiếu vuông góc của F trên các đường thẳng BD AB. Các đường thẳng IH và CD cắt nhau tại K. Tìm vị trí của điểm F để biểu thức AB BD AD FH FI FK đạt giá trị nhỏ nhất. + Cho góc nhọn xOy cố định và A là điểm cố định trên Ox. Đường tròn (I) thay đổi nhưng luôn tiếp xúc với Ox Oy lần lượt tại E D. Gọi AF là tiếp tuyến thứ hai kẻ từ A đến (I) (F là tiếp điểm). Chứng minh DF luôn đi qua một điểm cố định.
Đề học sinh giỏi cấp tỉnh Toán THCS năm 2022 - 2023 sở GDĐT Bình Dương
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi chọn học sinh giỏi cấp tỉnh môn Toán 9 THCS năm học 2022 – 2023 sở Giáo dục và Đào tạo tỉnh Bình Dương; kỳ thi được diễn ra vào thứ Bảy ngày 18 tháng 03 năm 2023. Trích dẫn Đề học sinh giỏi cấp tỉnh Toán THCS năm 2022 – 2023 sở GD&ĐT Bình Dương : + Cho A là tập hợp gồm 6 sản phẩm bất kì của tập hợp X x 0 14. Chứng minh rằng tồn tại hai tập con 1 2 B B của tập hợp A (1 2 B B khác nhau và khác rỗng) sao cho tổng các phần tử của tập B1 bằng tổng các phẩn tử của tập B2. + Cho hình thang ABCD AB CD AB CD. Gọi E là giao điểm của AD và BC, F là giao điểm của AC và BD. Chứng minh rằng đường thẳng EF đi qua trung điểm của hai đáy AB, CD. + Cho tam giác nhọn ABC D E F lần lượt là các điểm trên các cạnh BC, CA, AB. Nối AD, BE, CF. AD cắt CF và BE lần lượt tại G và I, CF cắt BE tại H. Chứng minh rằng nếu diện tích của bốn tam giác AFG, IHG, BID, CEH bằng nhau thì các diện tích của ba tứ giác AGHE, BIGF, CHID cũng bằng nhau.
Đề học sinh giỏi cấp tỉnh Toán 9 năm 2022 - 2023 sở GDĐT Bà Rịa - Vũng Tàu
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi chọn học sinh giỏi cấp tỉnh môn Toán 9 năm học 2022 – 2023 sở Giáo dục và Đào tạo tỉnh Bà Rịa – Vũng Tàu; kỳ thi được diễn ra vào thứ Năm ngày 23 tháng 03 năm 2023. Trích dẫn Đề học sinh giỏi cấp tỉnh Toán 9 năm 2022 – 2023 sở GD&ĐT Bà Rịa – Vũng Tàu : + Trên mặt phẳng toạ độ Oxy, cho điểm A thuộc parabol (P): y = -x2 có tung độ yA = –4. Tìm tọa độ các điểm B thuộc (P) sao cho tam giác OAB vuông tại B. + Cho điểm M nằm ngoài đường tròn (O). Từ M vẽ hai tiếp tuyến MA, MC của đường tròn (O) (A, C là các tiếp điểm). Vẽ cát tuyến MBD của (O) sao cho B nằm giữa M và D, BC < BD. 1) Chứng minh 2) Trên đoạn BD lấy điểm F sao cho FAD = BAC. Chứng minh hai tam giác ABF, ACD đồng dạng và AD.BC + AB.CD = AC.BD. 3) Tiếp tuyến tại B của đường tròn (O) cắt MC tại N và cắt đường thẳng CD tại P; ND cắt đường tròn (O) tại E. Chứng minh A, E, P thẳng hàng. + Cho điểm A nằm ngoài đường tròn (O). Từ điểm A vẽ hai tiếp tuyến AB, AC của đường tròn (O) (B, C là các tiếp điểm). Vẽ cát tuyến AED (E nằm giữa A và D) không đi qua O cắt BC ở F. Hai tia CE và DB cắt nhau ở G, trên tia đối của tia BC lấy điểm H sao cho tứ giác CDHG nội tiếp đường tròn.