Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi học kì 1 (HK1) lớp 11 môn Toán năm 2021 2022 trường THPT Phan Đình Phùng Hà Nội

Nội dung Đề thi học kì 1 (HK1) lớp 11 môn Toán năm 2021 2022 trường THPT Phan Đình Phùng Hà Nội Bản PDF Sáng thứ Ba ngày 28 tháng 12 năm 2021, trường THPT Phan Đình Phùng, quận Ba Đình, thành phố Hà Nội tổ chức kỳ thi kiểm tra chất lượng môn Toán lớp 11 giai đoạn cuối học kì 1 năm học 2021 – 2022. Đề thi HK1 Toán lớp 11 năm 2021 – 2022 trường THPT Phan Đình Phùng – Hà Nội được biên soạn theo dạng đề thi 100% trắc nghiệm, đề gồm 10 trang với 40 câu hỏi và bài toán, thời gian học sinh làm bài thi là 90 phút (không kể thời gian phát đề). Trích dẫn đề thi HK1 Toán lớp 11 năm 2021 – 2022 trường THPT Phan Đình Phùng – Hà Nội : + Từ thành phố A đến thành phố B có thể di chuyển bằng ôtô hoặc máy bay. Mỗi ngày có 10 chuyến ôtô và 3 chuyến máy bay. Số cách di chuyển từ thành phố A đến thành phố B trong một ngày là? + Một bài toán được giải bằng ba bước liền nhau. Nếu đã biết số cách thực hiện của mỗi bước, thì để tính số cách giải bài toán đó, ta dùng quy tắc đếm nào sau đây? A. Quy tắc nhân. B. Quy tắc cộng. C. Quy tắc trừ. D. Quy tắc chia. + Xét khai triển nhị thức Niu-tơn của biểu thức n a b. Trong các khẳng định sau, khẳng định sai là A. Số mũ của a và b trong mỗi hạng tử luôn khác nhau. B. Số mũ của a giảm dần từ n đến 0, số mũ của b tăng dần từ 0 đến n. C. Tổng số mũ của a và b trong mỗi hạng tử luôn bằng n. D. Các hệ số của mỗi hạng tử cách đều hai hạng tử đầu và cuối thì bằng nhau. + Có 5 tấm bìa ghi 5 chữ “HỌC”, “ĐỂ”, “CÙNG”, “CHUNG”, “SỐNG”. Một người xếp ngẫu nhiên 5 tấm bìa thành một hàng ngang. Xác suất 5 tấm bìa tạo thành dòng chữ “HỌC ĐỂ CÙNG CHUNG SỐNG” là? + Hãy điền cụm từ còn thiếu vào dấu … trong khẳng định sau để được một mệnh đề đúng: “Nếu hai mặt phẳng phân biệt cùng song song với một đường thẳng, thì giao tuyến của chúng (nếu có) sẽ … với đường thẳng đó”. A. song song. B. cắt. C. trùng. D. song song hoặc trùng.

Nguồn: sytu.vn

Đọc Sách

Đề thi HK1 Toán 11 năm học 2017 - 2018 trường THPT Kim Liên - Hà Nội
Đề thi HK1 Toán 11 năm học 2017 – 2018 trường THPT Kim Liên – Hà Nội gồm 4 trang với 2 phần: + Phần trắc nghiệm: gồm 25 câu hỏi, thời gian làm bài 45 phút, đòi hỏi học sinh làm bài nhanh và chính xác. + Phần tự luận: gồm 4 bài toán tự luận, thời gian làm bài 45 phút, kiểm tra khả năng trình bày lời giải của học sinh. Đề thi có đáp án . Trích dẫn đề thi : + Cho hình bình hành ABCD, biết A và B cố định, điểm C di động trên đường thẳng Δ cố định. Khẳng định nào sau đây là đúng? A. Điểm D di động trên đường thẳng Δ’ là ảnh của Δ qua phép đối xứng trục AB B. Điểm D di động trên đường thẳng Δ’ là ảnh của Δ qua phép tịnh tiến theo vectơ BA C. Điểm D di động trên đường thẳng Δ’ là ảnh của Δ qua phép đối xứng tâm I (I là trung điểm của AB) D. Điểm D di động trên đường thẳng Δ’ là ảnh của Δ qua phép tịnh tiến theo vectơ AB [ads] + Cho hàm số y = tanx. Khẳng định nào sau đây là sai? A. Hàm số là hàm số chẵn B. Hàm số tuần hoàn với chu kỳ π C. Hàm số đồng biến trên mỗi khoảng (-π/2 + kπ; π/2 + kπ) k ∈ Z D. Tập xác định của hàm số là R\(π/2 + kπ) k ∈ Z + Trên giá sách có 6 quyển sách tiếng Việt khác nhau, 4 quyển sách tiếng Anh khác nhau, 7 quyển sách tiếng Pháp khác nhau. Hỏi có bao nhiêu cách lấy từ giá trên 3 quyển sách sao cho có đủ cả sách tiếng Việt, tiếng Anh và tiếng Pháp? A. 59   B. 17 C. 680   D. 168 Bạn đọc có thể theo dõi các đề thi HK1 Toán 11 tại đây (cập nhật thường xuyên).
Đề thi HK1 Toán 11 năm học 2017 - 2018 trường THPT Lý Thánh Tông - Hà Nội
Đề thi HK1 Toán 11 năm học 2017 – 2018 trường THPT Lý Thánh Tông – Hà Nội gồm 4 câu hỏi trắc nghiệm và 25 câu hỏi tự luận, thời gian làm bài 90 phút, đề thi HK1 Toán 11 có đáp án và lời giải chi tiết . Trích dẫn đề thi : + Cho tứ diện MNPQ. Gọi A, B là hai điểm phân biệt cùng thuộc đường thẳng MN; C, D là hai điểm phân biệt cùng thuộc đường thẳng PQ. Khi đó AC và BD có vị trí tương đối là: A. AC và BD chéo nhau B. AC ≡ BD C. AC cắt BD D. AC // BD [ads] + Hình chóp tứ giác S.ABCD, đáy ABCD là hình chữ nhật. Gọi M,N,P lần lượt là các điểm trên BC, DC và SC sao cho SC = 4SP, CM = 3MB, CN = 3ND. 1. Xác định giao tuyến của hai mặt phẳng (SAC) và (SBD) 2. Chứng minh SD song song với mặt phẳng (MNP) + Có 2 chiếc hộp, mỗi hộp chứa 5 chiếc thẻ đều được đánh số từ 1 đến 5. Từ mỗi hộp rút ngẫu nhiên ra 1 chiếc thẻ. Tính xác suất để rút được 2 thẻ có tổng số ghi trên 2 tấm thẻ bằng 7?
Đề thi HK1 Toán 11 năm học 2016 - 2017 trường THPT Yên Khánh B - Ninh Bình
Đề thi HK1 Toán 11 năm học 2016 – 2017 trường THPT Yên Khánh B – Ninh Bình gồm 25 câu hỏi trắc nghiệm và 4 câu hỏi tự luận. Trích một số câu trong đề thi: 1. Khẳng định nào sau đây là khẳng định đúng? A. Hai đường thẳng phân biệt không song song thì chéo nhau B. Hai đường thẳng không có điểm chung thì chéo nhau C. Hai đường thẳng lần lượt nằm trên hai mặt phẳng phân biệt thì chéo nhau D. Hai đường thẳng chéo nhau thì không có điểm chung 2. Cho hình chóp S.ABCD có đáy là hình bình hành tâm O. Gọi M N, lần lượt là trung điểm SD, BC. a) Tìm giao tuyến của (SAC) và (SBD) b) Chứng minh rằng MN // (SAB) 3. Đội thanh niên xung kích của trường THPT Yên Khánh B có 12 học sinh gồm 5 học sinh lớp 12, 4 học sinh lớp 11 và 3 học sinh lớp 10. Chọn ngẫu nhiên 4 học sinh đi làm nhiệm vụ. Tính xác suất để 4 học sinh được chọn thuộc không quá 2 trong 3 lớp trên.
Đề thi HK1 Toán 11 năm học 2016 - 2017 sở GD và ĐT Quảng Nam
Đề thi HK1 Toán 11 năm học 2016 – 2017 sở GD và ĐT Quảng Nam gồm 25 câu hỏi trắc nghiệm và 4 câu hỏi tự luận. Trích một số câu trong đề thi: 1. Cho tứ diện ABCD; gọi M, N, K lần lượt là trung điểm của AB, BC, CD. Trong các khẳng định sau, khẳng định nào đúng? A. Giao tuyến của mặt phẳng (MNK) và mặt phẳng (ABD) đi qua trung điểm của AD B. Hai đường thẳng MN và BD cắt nhau C. Hai đường thẳng MK và AC cắt nhau D. AD song song với mặt phẳng (MNK) 2. Có 5 quyển sách khác nhau gồm 3 quyển sách Văn và 2 quyển sách Toán. Hỏi có bao nhiêu cách xếp 5 quyển sách trên lên kệ sách dài (xếp hàng ngang) sao cho tất cả quyển sách cùng môn phải đứng cạnh nhau 3. Cho hình chóp tứ giác S.ABCD có AB và CD không song song với nhau. Gọi M , N lần lượt là trung điểm của SC và SA. a/ Chứng minh đường thẳng MN song song với mặt phẳng (ABCD); tìm giao tuyến của mặt phẳng (DMN) và mặt phẳng (ABCD) b/ Gọi O là điểm nằm ở miền trong của tứ giác ABCD . Tìm giao điểm của đường thẳng SO và mặt phẳng (MAB)