Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề chọn đội tuyển thi HSG QG môn Toán năm 2022 sở GDĐT Sơn La

giới thiệu đến quý thầy, cô giáo và các em học sinh đề chọn đội tuyển thi HSG QG môn Toán năm 2022 sở GD&ĐT Sơn La; kỳ thi được diễn ra trong hai ngày 18 và 19 tháng 09 năm 2021. Trích dẫn đề chọn đội tuyển thi HSG QG môn Toán năm 2022 sở GD&ĐT Sơn La : + Cho tam giác nhọn ABC không cân nội tiếp đường tròn (O), có đường cao AH và tâm đường tròn nội tiếp là I. Đường thẳng AI cắt đường tròn (O) tại điểm thứ hai M. Gọi M là điểm đối xứng với A qua tâm O. Đường thẳng MA’ cắt các đường thẳng AH, BC theo thứ tự tại N và K. a) Chứng minh tứ giác NHIK nội tiếp đường tròn. b) Đường thẳng A’I cắt lại đường tròn (O) tại điểm thứ hai D, hai đường thẳng AD và BC cắt nhau tại điểm S. Chứng minh rằng nếu AB + AC = 2BC thì I là trọng tâm của tam giác AKS. + Chứng minh rằng nếu số tự nhiên m có dạng 4k + 1 với k > 0 mà biểu diễn được không ít hơn hai cách dưới dạng tổng hai số chính phương thì m là hợp số. + Với số nguyên dương N cho trước, trên bảng có viết tất cả các ước nguyên dương của N. Hai bạn An và Bình chơi một trò chơi với luật như sau: An đi đầu tiên và xóa số N, ở mỗi lượt tiếp theo, các bạn sẽ xóa số là ước hoặc bội của số mà người kia xóa ở lượt trước đó. Ai đến lượt đi của mình mà không thực hiện được nữa thì thua. a) Với N = 2022, chứng minh rằng Bình có cách chơi để thắng. b) Tìm số N nhỏ nhất và N > 2022 sao cho An có cách chơi thắng.

Nguồn: toanmath.com

Đọc Sách

Đề học sinh giỏi cấp tỉnh Toán THPT năm 2022 - 2023 sở GDĐT Lào Cai
giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 12 đề thi chọn học sinh giỏi cấp tỉnh môn Toán THPT năm học 2022 – 2023 sở Giáo dục và Đào tạo tỉnh Lào Cai; kỳ thi được diễn ra vào ngày 11 tháng 02 năm 2023; đề thi có đáp án và hướng dẫn chấm điểm.
Đề học sinh giỏi Toán 12 cấp tỉnh năm 2022 - 2023 sở GDĐT Đồng Tháp
giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 12 đề thi chọn học sinh giỏi môn Toán 12 cấp tỉnh năm học 2022 – 2023 sở Giáo dục và Đào tạo tỉnh Đồng Tháp; kỳ thi được diễn ra vào ngày 02 tháng 04 năm 2023; đề thi có đáp án và hướng dẫn chấm điểm.
Đề học sinh giỏi cấp tỉnh Toán THPT năm 2022 - 2023 sở GDĐT Sóc Trăng
giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 12 đề thi chọn học sinh giỏi cấp tỉnh môn Toán THPT năm học 2022 – 2023 sở Giáo dục và Đào tạo tỉnh Sóc Trăng; đề thi có đáp án và hướng dẫn chấm điểm.
Đề học sinh giỏi tỉnh Toán 12 năm 2022 - 2023 sở GDĐT Bà Rịa - Vũng Tàu
giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 12 đề thi chọn học sinh giỏi cấp tỉnh môn Toán 12 năm học 2022 – 2023 sở Giáo dục và Đào tạo tỉnh Bà Rịa – Vũng Tàu; kỳ thi được diễn ra vào ngày 13 tháng 12 năm 2022; đề thi có đáp án và lời giải chi tiết (đáp án và lời giải được biên soạn bởi Nhóm Toán VDC & HSG THPT. Trích dẫn Đề học sinh giỏi tỉnh Toán 12 năm 2022 – 2023 sở GD&ĐT Bà Rịa – Vũng Tàu : + Cho hàm số 3 2 yx m x m x m 2 1 31 22 có đồ thị là (Cm). Tìm tất cả các giá trị tham số m để (Cm) cắt trục hoành tại 3 điểm phân biệt A(2;0), B và C sao cho trong hai điểm B, C có một điểm nằm trong và một điểm nằm ngoài đường tròn 2 2 Cx y 1. + Cho hình chóp S ABC có đáy ABC là tam giác vuông cân tại B, tam giác SAC cân tại S và nằm trong mặt phẳng vuông góc với đáy. Gọi M N lần lượt là trung điểm của SA và BC. Biết AB a và MN tạo với mặt đáy một góc 60°. Tính thể tích khối chóp S ABC theo a. + Cho hàm số f x xác định, liên tục trên R và thoả mãn fx x x cot sin 2 cos 2. Tìm giá trị lớn nhất và giá trị nhỏ nhất của hàm số gx f xf x trên đoạn [−1;1].