Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Chuyên đề quan hệ vuông góc trong không gian Toán 11 - Lê Minh Tâm

Tài liệu gồm 217 trang, được biên soạn bởi thầy giáo Lê Minh Tâm, bao gồm lý thuyết và các dạng bài tập chuyên đề quan hệ vuông góc trong không gian môn Toán 11, có đáp án và lời giải chi tiết. Bài 01 . HAI ĐƯỜNG THẲNG VUÔNG GÓC. A. Lý thuyết. 1. Góc giữa 2 đường thẳng 3. 2. Hai đường thẳng vuông góc trong không gian 3. B. Bài tập. Bài 02 . ĐƯỜNG THẲNG VUÔNG GÓC MẶT PHẲNG. A. Lý thuyết. 1. Đường thẳng vuông góc với mặt phẳng 6. 2. Liên hệ giữa tính song song – vuông góc của đường thẳng & mặt phẳng 8. 3. Phép chiếu vuông góc 9. 4. Định lý ba đường vuông góc 9. 5. Góc giữa đường thẳng & mặt phẳng 10. 6. Kiến thức bổ trợ 10. 6.1. Một số mô hình thường gặp 10. 6.2. Các hệ thức lượng trong tam giác 11. 6.3. Các chú ý khác 12. B. Bài tập. + Dạng 1. Chứng minh đường thẳng vuông góc mặt phẳng 13. + Dạng 2. Chứng minh hai đường thẳng vuông góc 15. C. Luyện tập. Dạng: Chứng minh vuông góc 16. Dạng: Góc giữa đường mặt 18. Bài 03 . HAI MẶT PHẲNG VUÔNG GÓC. A. Lý thuyết. 1. Góc giữa hai mặt phẳng 21. 2. Hai mặt phẳng vuông góc 21. 3. Tính chất cơ bản về hai mặt phẳng vuông góc 22. 4. Hình lăng trụ đứng, hình hộp chữ nhật, hình lập phương 23. 5. Hình chóp đều và hình chóp cụt đều 24. B. Bài tập. + Dạng 1. Xác định góc giữa hai mặt phẳng bằng cách dùng định nghĩa 26. + Dạng 2. Xác định góc giữa hai mặt phẳng dựa trên giao tuyến 28. + Dạng 3. Xác định góc giữa hai mặt phẳng dựa vào định lý hình chiếu 31. + Dạng 4. Chứng minh hai mặt phẳng vuông góc 33. + Dạng 5. Thiết diện 34. C. Luyện tập. Dạng: Tính góc giữa hai mặt phẳng 36. Dạng: Chứng minh hai mặt phẳng vuông góc 38. Dạng: Thiết diện 41. Bài 04 . KHOẢNG CÁCH. A. Lý thuyết. 1. Khoảng cách từ 1 điểm tới 1 đường thẳng, đến 1 mặt phẳng 43. 1.1. Khoảng cách từ một điểm đến một đường thẳng 43. 1.2. Khoảng cách từ một điểm đến một mặt phẳng 43. 2. Khoảng cách giữa đường và mặt song song, hai mặt song song 44. 2.1. Khoảng cách giữa đường thẳng và mặt phẳng song song 44. 2.2. Khoảng cách giữa hai mặt phẳng song song 44. 3. Đường vuông góc chung và khoảng cách hai đường chéo nhau 44. 3.1. Định nghĩa 44. 3.2. Cách dựng đoạn vuông góc chung của hai đường thẳng chéo nhau 44. B. Bài tập. + Dạng 1. Khoảng cách từ chân đường cao đến một mặt bên 46. + Dạng 2. Khoảng cách từ điểm bất kỳ đến một mặt phẳng 48. + Dạng 3. Khoảng cách hai đường chéo nhau 50. C. Luyện tập. Dạng: Tính khoảng cách từ điểm đến mặt phẳng 52. Dạng: Tính khoảng cách 2 đường chéo nhau 53. Dạng: Tính khoảng cách liên quan nhỏ nhất 54. Bài 05 . ÔN TẬP CHƯƠNG VIII: QUAN HỆ VUÔNG GÓC.

Nguồn: toanmath.com

Đọc Sách

Bài toán khoảng cách trong không gian
Tài liệu gồm 63 trang, trình bày lý thuyết trọng tâm, các dạng toán trọng tâm kèm phương pháp giải và bài tập trắc nghiệm tự luyện chuyên đề bài toán khoảng cách trong không gian, có đáp án và lời giải chi tiết; hỗ trợ học sinh lớp 11 trong quá trình học tập chương trình Toán 11 phần Hình học chương 3. Vấn đề 1: KHOẢNG CÁCH TỪ ĐIỂM ĐẾN MẶT PHẲNG. + Dạng 1: Khoảng cách từ một điểm trên mặt phẳng đáy tới mặt phẳng chứa đường cao. + Dạng 2: Khoảng cách từ chân đường cao đến mặt phẳng bên. + Dạng 3: Khoảng cách từ một điểm bất kỳ đến mặt bên. + Dạng 4: Khoảng cách giữa đường thẳng và mặt phẳng song song. Khoảng cách giữa hai mặt phẳng song song. Vấn đề 2: KHOẢNG CÁCH GIỮA HAI ĐƯỜNG THẲNG CHÉO NHAU. + Dạng 1: Khoảng cách giữa hai đường thẳng chéo nhau và vuông góc với nhau. + Dạng 2: Tính khoảng cách giữa hai đường thẳng chéo nhau không vuông góc. BÀI TẬP TỰ LUYỆN. LỜI GIẢI BÀI TẬP TỰ LUYỆN.
Bài toán về góc trong không gian
Tài liệu gồm 56 trang, trình bày lý thuyết trọng tâm, các dạng toán trọng tâm kèm phương pháp giải và bài tập trắc nghiệm tự luyện chuyên đề bài toán về góc trong không gian, có đáp án và lời giải chi tiết; hỗ trợ học sinh lớp 11 trong quá trình học tập chương trình Toán 11 phần Hình học chương 3. Vấn đề 1: GÓC GIỮA HAI ĐƯỜNG THẲNG. 1. Định nghĩa góc giữa hai đường thẳng. 2. Cách xác định góc giữa hai đường thẳng. 3. Phương pháp tính góc giữa hai đường thẳng. Vấn đề 2: GÓC GIỮA ĐƯỜNG THẲNG VÀ MẶT PHẲNG. + Dạng 1: Góc giữa cạnh bên và mặt đáy. + Dạng 2: Góc giữa cạnh bên và mặt phẳng chứa đường cao. + Dạng 3: Góc giữa đường cao và mặt bên. + Dạng 4: Góc giữa cạnh bên và mặt bên. Vấn đề 3: GÓC GIỮA HAI MẶT PHẲNG. + Dạng 1: Góc giữa mặt bên và mặt đáy. + Dạng 2: Góc giữa hai mặt bên. + Dạng 3: Sử dụng định lý hình chiếu để tính góc giữa hai mặt phẳng. BÀI TẬP TỰ LUYỆN. LỜI GIẢI BÀI TẬP TỰ LUYỆN.
Toàn tập góc và khoảng cách vận dụng cao
Tài liệu gồm 62 trang, được biên soạn bởi thầy giáo Lương Tuấn Đức (Giang Sơn), tuyển tập hệ thống bài tập trắc nghiệm chuyên đề góc và khoảng cách vận dụng cao (VDC) lớp 11 THPT. Vận dụng cao góc giữa đường thẳng và mặt phẳng – (phần 1). Vận dụng cao góc giữa đường thẳng và mặt phẳng – (phần 2). Vận dụng cao góc giữa đường thẳng và mặt phẳng – (phần 3). Vận dụng cao góc giữa đường thẳng và mặt phẳng – (phần 4). Vận dụng cao góc giữa đường thẳng và mặt phẳng – (phần 5). Vận dụng cao góc nhị diện – (phần 1). Vận dụng cao góc nhị diện – (phần 2). Vận dụng cao góc nhị diện – (phần 3). Vận dụng cao góc nhị diện – (phần 4). Vận dụng cao góc nhị diện – (phần 5). Vận dụng cao góc nhị diện – (phần 6). Vận dụng cao khoảng cách giữa điểm và mặt phẳng – (phần 1). Vận dụng cao khoảng cách giữa điểm và mặt phẳng – (phần 2). Vận dụng cao khoảng cách giữa điểm và mặt phẳng – (phần 3). Vận dụng cao khoảng cách giữa điểm và mặt phẳng – (phần 4). Vận dụng cao khoảng cách giữa điểm và mặt phẳng – (phần 5). Vận dụng cao khoảng cách giữa điểm và mặt phẳng – (phần 6). Vận dụng cao khoảng cách giữa hai đường thẳng chéo nhau – (phần 1). Vận dụng cao khoảng cách giữa hai đường thẳng chéo nhau – (phần 2). Vận dụng cao khoảng cách giữa hai đường thẳng chéo nhau – (phần 3). Vận dụng cao khoảng cách giữa hai đường thẳng chéo nhau – (phần 4). Vận dụng cao khoảng cách giữa hai đường thẳng chéo nhau – (phần 5). Vận dụng cao khoảng cách giữa hai đường thẳng chéo nhau – (phần 6). Vận dụng cao khoảng cách giữa hai đường thẳng chéo nhau – (phần 7). Vận dụng cao khoảng cách giữa hai đường thẳng chéo nhau – (phần 8). Vận dụng cao khoảng cách giữa hai đường thẳng chéo nhau – (phần 9). Vận dụng cao khoảng cách giữa hai đường thẳng chéo nhau – (phần 10). Vận dụng cao khoảng cách giữa hai đường thẳng chéo nhau – (phần 11). Vận dụng cao khoảng cách giữa hai đường thẳng chéo nhau – (phần 12). Vận dụng cao khoảng cách giữa hai đường thẳng chéo nhau – (phần 13). Vận dụng cao khoảng cách giữa hai đường thẳng chéo nhau – (phần 14).
Phân loại và phương pháp giải bài tập vectơ trong không gian, quan hệ vuông góc
Tài liệu gồm 173 trang, được biên soạn bởi thầy giáo Trần Đình Cư, tóm tắt lý thuyết, phân loại và phương pháp giải bài tập vectơ trong không gian, quan hệ vuông góc, giúp học sinh lớp 11 tham khảo khi học chương trình Hình học 11 chương 3 (Toán 11). BÀI 1 . VECTƠ TRONG KHÔNG GIAN. Dạng 1. Biểu diễn vectơ. Dạng 2. Đẳng thức vectơ. Dạng 3. Đồng phẳng của ba vectơ. Dạng 4. Tìm điểm thỏa mãn đẳng thức vectơ. BÀI 2 . HAI ĐƯỜNG THẲNG VUÔNG GÓC. Dạng 1. Tính góc giữa hai đường thẳng. Dạng 2. Chứng minh hai đường thẳng vuông góc trong không gian. BÀI 3 . ĐƯỜNG THẲNG VUÔNG GÓC VỚI MẶT PHẲNG. Dạng 1. Câu hỏi lý thuyết. Dạng 2. Chứng minh đường thẳng vuông góc với mặt phẳng. Từ đó suy ra đường thẳng vuông góc với đường thẳng. Dạng 3. Xác định góc – hình chiếu – tính độ dài. Dạng 4. Thiết diện. BÀI 4 . HAI MẶT PHẲNG VUÔNG GÓC. Dạng 1. Câu hỏi lý thuyết. Dạng 2. Chứng minh hai mặt phẳng vuông góc. Dạng 3. Tính góc giữa hai mặt phẳng. Dạng 4. Thiết diện. BÀI 5 . KHOẢNG CÁCH. Dạng 1. Khoảng cách từ một điểm đến đường thẳng. Dạng 2. Khoảng cách từ một điểm đến mặt phẳng. Dạng 3. Khoảng cách giữa hai mặt phẳng song song, khoảng cách từ đường thẳng đến mặt phẳng. Dạng 4. Khoảng cách giữa hai đường thẳng chéo nhau.