Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Tài liệu lớp 9 môn Toán chủ đề một số hệ thức về cạnh và đường cao trong tam giác vuông

Nội dung Tài liệu lớp 9 môn Toán chủ đề một số hệ thức về cạnh và đường cao trong tam giác vuông Bản PDF - Nội dung bài viết Tài liệu học Toán lớp 9 - Hệ thức về cạnh và đường cao trong tam giác vuôngTóm tắt lý thuyếtBài tập và các dạng toánDạng 1: Tính độ dài các đoạn thẳng trong tam giác vuôngDạng 2: Tính chu vi, diện tích các hìnhDạng 3: Chứng minh các hệ thức liên quan đến tam giác vuông Tài liệu học Toán lớp 9 - Hệ thức về cạnh và đường cao trong tam giác vuông Tài liệu này bao gồm 43 trang, cung cấp kiến thức cần thiết, các dạng toán và bài tập liên quan đến cạnh và đường cao trong tam giác vuông trong chương trình môn Toán lớp 9. Đồng thời, tài liệu cũng đi kèm với đáp án và lời giải chi tiết. Tóm tắt lý thuyết Khi giải các bài toán về cạnh và đường cao trong tam giác vuông, việc nắm vững các kiến thức về định lý Talet, về đồng dạng của tam giác là rất quan trọng. Cần phải hiểu rõ các hệ thức sau: Hệ thức giữa cạnh góc vuông và hình chiếu: Bình phương mỗi cạnh góc vuông bằng tích của cạnh huyền và hình chiếu của cạnh góc vuông đó trên cạnh huyền. Hệ thức liên quan tới đường cao: Bình phương đường cao ứng với cạnh huyền bằng tích của hai hình chiếu của hai cạnh góc vuông trên cạnh huyền. Bài tập và các dạng toán Dạng 1: Tính độ dài các đoạn thẳng trong tam giác vuông Để giải bài toán này, các bước cơ bản như sau: Xác định vai trò của đoạn thẳng đã biết và đoạn thẳng cần tính trong tam giác vuông. Lựa chọn công thức tính phù hợp dựa trên các kiến thức đã học. Dạng 2: Tính chu vi, diện tích các hình Để tính chu vi, diện tích các hình, bạn cần làm các bước sau: Xác định hình cần tính chu vi, diện tích. Viết công thức tính chu vi, diện tích của hình đó. Dạng 3: Chứng minh các hệ thức liên quan đến tam giác vuông Để chứng minh các hệ thức liên quan đến tam giác vuông, bạn cần áp dụng các hệ thức về cạnh và đường cao theo các bước: Chọn tam giác vuông thích hợp chứa các đoạn thẳng cần chứng minh. Tính các đoạn thẳng cần chứng minh bằng các hệ thức về cạnh và đường cao. Trong tài liệu còn đi kèm bài tập trắc nghiệm và bài tập về nhà để giúp bạn ôn tập kiến thức. File Word dành cho giáo viên có thể tải xuống!

Nguồn: sytu.vn

Đọc Sách

Chuyên đề căn bậc hai và căn bậc ba - Diệp Tuân
Tài liệu gồm 127 trang, được biên soạn bởi thầy giáo Diệp Tuân, trình bày tóm tắt lý thuyết, phân dạng và bài tập minh họa chuyên đề căn bậc hai và căn bậc ba, giúp học sinh lớp 9 tham khảo khi học chương trình Toán 9 tập 1 phần Đại số chương 1. §BÀI 1. CĂN BẬC HAI. Dạng 1. Tìm căn bậc hai số học của một số. Dạng 2. Tìm số có căn bậc hai số học là một số cho trước. Dạng 3. So sánh hai số. Dạng 4. Tìm x thỏa điều kiện cho trước. §BÀI 2. CĂN THỨC BẬC HAI VÀ HẰNG ĐẲNG THỨC √A2 = |A|. Dạng 1. Tìm điều kiện để √A có nghĩa. Dạng 2. Tính giá trị biểu thức. Dạng 3. Rút gọn biểu thức. Dạng 4. Giải phương trình. Dạng 5. phân tích đa thức thành nhân tử. Dạng 6. Chứng minh bất đẳng thức. Dạng 7. Tìm giá trị lớn nhất và giá trị nhỏ nhất của biểu thức. §BÀI 3. LIÊN HỆ GIỮA PHÉP NHÂN VÀ PHÉP KHAI PHƯƠNG. Dạng 1. Thực hiện phép tính. Dạng 2. Rút gọn biểu thức và tính giá trị biểu thức. Dạng 3. Phân tích đa thức thành nhân tử. Dạng 4. Giải phương trình. Dạng 5. Chứng minh bất đẳng thức. §BÀI 4. LIÊN HỆ GIỮA PHÉP CHIA VÀ PHÉP KHAI PHƯƠNG. Dạng 1. Thực hiện phép tính. Dạng 2. Rút gọn biểu thức. Dạng 3. Giải phương trình. Dạng 4. Chứng minh bất đẳng thức. §BÀI 6. BIẾN ĐỔI ĐƠN GIẢN BIỂU THỨC CHỨA CĂN THỨC BẬC HAI. Dạng 1. Đưa thừa số ra ngoài dấu căn và đưa thừa số vào trong dấu căn. Dạng 2. So sánh phân số. Dạng 3. Rút gọn biểu thức. §BÀI 7. TRỤC CĂN THỨC Ở MẪU. Dạng 1. Khử mẫu của biểu thức lấy căn. Dạng 2. Trục căn ở mẫu. Dạng 3. Rút gọn biểu thức. Dạng 4. Phân tích thành nhân tử. Dạng 5. So sánh các số. Dạng 6. Giải phương trình. §BÀI 8. RÚT GỌN BIỂU THỨC CHỨA CĂN THỨC BẬC HAI. Dạng 1. Rút gọn các biểu thức. Dạng 2. Chứng minh đẳng thức. Dạng 3. Chứng minh biểu thức không phụ thuộc vào biến. Dạng 4. Rút gọn rồi tính giá trị của biểu thức tại x = a. Dạng 5. Rút gọn rồi tìm giá trị lớn nhất và giá trị nhỏ nhất của biểu thức. Dạng 6. Rút gọn rồi tìm giá trị của x nguyên để biểu thức nhận giá trị nguyên. §BÀI 9. CĂN BẬC BA. Dạng 1. Thực hiện phép tính. Dạng 2. Chứng minh đẳng thức. Dạng 3. So sánh hai số. Dạng 4. Giải phương trình.
Tài liệu Toán 9 chủ đề hàm số và đồ thị hàm số y ax2 (a khác 0)
Tài liệu gồm 20 trang, bao gồm kiến thức cần nhớ, các dạng toán và bài tập chủ đề hàm số và đồ thị hàm số y = ax2 (a khác 0) trong chương trình môn Toán 9, có đáp án và lời giải chi tiết. A. Các kiến thức cần nhớ. 1. Tính chất của hàm số 2 y ax a 0. – Nếu a > 0 thì hàm số đồng biến khi x > 0 và nghịch biến khi x < 0. – Nếu a < 0 thì hàm số đồng biến khi x < 0 và nghịch biến khi x > 0. Nhận xét: – Nếu a > 0 thì y > 0 với mọi x ≠ 0; y = 0 khi x = 0. Giá trị nhỏ nhất của y bằng 0. – Nếu a < 0 thì y < 0 với mọi x ≠ 0; y = 0 khi x = 0. Giá trị lớn nhất của y bằng 0. 2. Đồ thị của hàm số 2 y ax a 0. Đồ thị của hàm số 2 y ax a 0 là một đường cong luôn đi qua gốc tọa độ và nhận Oy làm trục đối xứng. Đường cong được gọi là Parabol với đỉnh O. – Nếu a > 0 thì (P) nằm phía trên trục hoành và O là điểm thấp nhất. – Nếu a < 0 thì (P) nằm phía dưới trục hoành và O là điểm cao nhất. B. Bài tập áp dụng. + Dạng 1: Tính giá trị của hàm số tại một điểm cho trước. + Dạng 2: Xét tính đồng biến, nghịch biến của hàm số. + Dạng 3: Vẽ đồ thị hàm số y = ax2 (a khác 0). + Dạng 4: Sự tương giao giữa (P) và (d). BÀI TẬP VỀ NHÀ.
Tài liệu Toán 9 chủ đề công thức nghiệm của phương trình bậc hai
Tài liệu gồm 28 trang, bao gồm kiến thức cần nhớ, các dạng toán và bài tập chủ đề công thức nghiệm của phương trình bậc hai trong chương trình môn Toán 9, có đáp án và lời giải chi tiết. A. Kiến thức cần nhớ. 1. Phương trình bậc hai một ẩn. – Phương trình bậc hai một ẩn (hay còn gọi là phương trình bậc hai) là phương trình có dạng: 2 ax bx c a trong đó abc là các số thực cho trước và x là ẩn số. – Giải phương trình bậc hai một ẩn là đi tìm tập nghiệm của phương trình bậc hai một ẩn đó. 2. Công thức nghiệm của phương trình bậc hai. Xét phương trình bậc hai 2 ax bx c a 0 0 và biệt thức 2 ∆ b ac 4. – Trường hợp 1: Nếu ∆ < 0 thì phương trình vô nghiệm. – Trường hợp 2: Nếu ∆ = 0 thì phương trình có nghiệm kép. – Trường hợp 3: Nếu ∆ > 0 thì phương trình có hai nghiệm phân biệt. 3. Công thức nghiệm thu gọn của phương trình bậc hai. Xét phương trình bậc hai 2 ax bx c a 0 với b b 2. Gọi biệt thức 2 ∆ b ac. – Trường hợp 1: Nếu ∆ < 0 thì phương trình vô nghiệm. – Trường hợp 2: Nếu ∆ = 0 thì phương trình có nghiệm kép: 1 2 b x x a. – Trường hợp 3: Nếu ∆ > 0 thì phương trình có hai nghiệm phân biệt: 1 2 b x a. Chú ý: Trong trường hợp hệ số b có dạng 2 b ta nên sử dụng ∆’ để giải phương trình sẽ cho lời giải ngắn gọn hơn. Nếu a c trái dấu thì phương trình luôn có hai nghiệm phân biệt. B. Bài tập và các dạng toán. + Dạng 1: Không dùng công thức nghiệm, giải phương trình bậc hai một ẩn cho trước. + Dạng 2: Giải phương trình bậc hai bằng cách sử dụng công thức nghiệm, công thức nghiệm thu gọn. + Dạng 3: Sử dụng công thức nghiệm, xác định số nghiệm của phương trình dạng bậc hai. + Dạng 4: Giải và biện luận phương trình dạng bậc hai. + Dạng 5: Dạng toán liên quan đến tính có nghiệm của phương trình bậc hai, nghiệm chung của phương trình bậc hai. + Dạng 6: Chứng minh phương trình bậc hai có nghiệm, vô nghiệm. BÀI TẬP VỀ NHÀ.
Tài liệu Toán 9 chủ đề hệ thức Vi-ét và ứng dụng
Tài liệu gồm 36 trang, bao gồm kiến thức cần nhớ, các dạng toán và bài tập chủ đề hệ thức Vi-ét và ứng dụng trong chương trình môn Toán 9, có đáp án và lời giải chi tiết. A. Lý thuyết. 1. Hệ thức Viét. 2. Ứng dụng của hệ thức Viét. B. Bài tập. Dạng 1: Không giải phương trình, tính giá trị của biểu thức đối xứng giữa các nghiệm. Dạng 2: Giải phương trình bằng phương pháp nhẩm nghiệm. Dạng 3: Tìm hai số khi biết tổng và tích. Dạng 4: Xét dấu các nghiệm của phương trình bậc hai. Dạng 5: Xác định điều kiện của tham số để phương trình bậc hai có nghiệm thỏa mãn hệ thức cho trước. Dạng 6: Tìm GTLN – GTNN của biểu thức. Dạng 7: Tìm hệ thức giữa hai nghiệm của phương trình không phụ thuộc vào tham số. BÀI TẬP VỀ NHÀ.