Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Bộ đề phát triển đề minh họa tốt nghiệp THPT 2021 môn Toán - Lê Quang Xe

Tài liệu gồm 65 trang, được biên soạn bởi thầy giáo Lê Quang Xe, tuyển tập 4 đề phát triển đề minh họa tốt nghiệp THPT 2021 môn Toán, có đáp án và lời giải chi tiết; đây là các đề thi có cấu trúc được xây dựng dựa trên ma trận đề minh họa tốt nghiệp THPT 2021 môn Toán mà Bộ Giáo dục và Đào tạo công bố hôm 31 tháng 03 năm 2021. Cấu trúc đề minh họa tốt nghiệp THPT 2021 môn Toán: + Hoán vị – Chỉnh hợp – Tổ hợp. + Cấp số cộng (nhân). + Tính đơn điệu của hàm số (dựa vào BBT). + Cực trị của hàm số khi biết BBT. + Đếm số cực trị của hàm số khi biết bảng dấu đạo hàm. + Tiệm cận của đồ thị. + Nhận dạng hàm số khi biết đồ thị. + Sự tương giao đồ thị (tìm hoành độ hoặc tung độ giao điểm). + Logarit (tính và rút gọn biểu thức). + Hàm số mũ – logarits (tính đạo hàm hàm mũ). + Lũy thừa (biểu diễn căn bậc n dưới dạng lũy thừa). + Phương trình mũ – logarits (tìm nghiệm của phương trình mũ). + Phương trình mũ – logarits (tìm nghiệm của phương trình logarits). + Tính nguyên hàm – tích phân (nguyên hàm hàm đa thức). + Tính nguyên hàm – tích phân (nguyên hàm lượng giác). + Tính nguyên hàm – tích phân (tính tích phân dựa vào tính chất). + Tính nguyên hàm – tích phân (tính tích của phân hàm đa thức). + Số phức (các khái niệm cơ bản về số phức). + Số phức (các phép toán về số phức). + Số phức (các khái niệm cơ bản về số phức). + Thể tích khối đa diện (khối chóp biết chiều cao và diện tích đáy). + Thể tích khối đa diện (khối lăng trụ biết chiều cao và diện tích đáy). + Thể tích nón – trụ – cầu (thể tích khối nón). + Diện tích nón – trụ – cầu (diện tích khối trụ). + Hệ Oxyz (tọa độ trung điểm đoạn). + Hệ Oxyz (tìm tâm và tính bán kính mặt cầu). + Phương trình mặt phẳng (xét vị trí của điểm và măt phẳng). + Phương trình đường thẳng (tìm vectơ chỉ phương). + Xác suất của biến cố. + Tính đơn điệu của hàm số. + GTLN – GTNN của hàm số trên đoạn. + Bất phương trình mũ – logarits. + Tính nguyên hàm – tích phân (khi biết tích phân khác). + Số phức (các phép toán – tính modun của tích). + Góc giữa đường thẳng và mặt phẳng. + Khoảng cách (khoảng cách từ một điểm đến một mặt phẳng). + Hệ Oxyz (lập phương trình mặt cầu). + Phương trình đường thẳng (lập phương trình đường thẳng qua hai điểm). + GTLN – GTNN của hàm số hợp trên đoạn khi biết đồ thị y’. + Bất phương trình mũ – logarits (bất phương trình liên quan đến hai biến số). + Tính tích phân hàm hợp khi biết hàm f(x) cho bởi nhiều hàm. + Số phức (tìm số số phức thỏa mãn điều kiện cho trước). + Thể tích khối đa diện (khối chóp). + Diện tích nón – trụ – cầu (diện tích khối trụ). + Phương trình mặt phẳng, phương trình đường thẳng trong không gian (lập phương trình đường thẳng thỏa mãn yêu cầu). + Số điểm cực trị của hàm hợp khi biết BBT của f'(x). + Phương trình mũ – logarits (đếm số nghiệm của phương trình). + Ứng dụng tích phân (tính tỉ số diện tích hình phẳng). + Min – max số phức. + Hệ Oxyz, phương trình mặt phẳng, phương trình đường thẳng trong không gian.

Nguồn: toanmath.com

Đọc Sách

Đề thi thử tốt nghiệp THPT 2020 lần 2 môn Toán trường THPT chuyên Bắc Ninh
Ngày … tháng 07 năm 2020, trường THPT chuyên Bắc Ninh, tỉnh Bắc Ninh tổ chức kỳ thi thử tốt nghiệp Trung học Phổ thông môn Toán năm học 2019 – 2020 lần thứ hai dành cho học sinh khối 12 của nhà trường. Đề thi thử tốt nghiệp THPT 2020 lần 2 môn Toán trường THPT chuyên Bắc Ninh mã đề 208 gồm 06 trang với 50 câu trắc nghiệm, thời gian làm bài 90 phút. Trích dẫn đề thi thử tốt nghiệp THPT 2020 lần 2 môn Toán trường THPT chuyên Bắc Ninh : + Cho f(x) là hàm liên tục trên đoạn [1;3] với f(1) = 10 và f(3) = 18. Chọn khẳng định đúng trong các khẳng định sau: A. Tích phân từ 1 đến 3 của f(x) lớn hơn 20. B. Phương trình f’(x) = 8 có ít nhất một nghiệm. C. Phương trình f(x) = 17 có ít nhất một nghiệm. D. 10 ≤ f(2) ≤ 18. + Số lượng của một loài vi khuẩn trong phòng thí nghiệm được tính theo công thức S(t) = A.e^rt, trong đó A là số lượng vi khuẩn ban đầu, t là thời gian tăng trưởng, S(t) là số lượng vi khuẩn có trong khoảng thời gian t, r là tỷ lệ tăng trưởng (r > 0). Biết rằng, sau một giờ số lượng vi khuẩn tăng khoảng 13 lần. Hỏi sau một ngày, số lượng vi khuẩn tăng gấp khoảng bao nhiêu lần số lượng ban đầu? [ads] + Trong một thư viện có 12 quyển sách bao gồm 3 quyển sách Toán giống nhau, 3 quyển sách Vật lý giống nhau, 3 quyển sách  Hóa học giống nhau, 3 quyển sách Sinh học giống nhau. Có bao nhiêu cách xếp thành một dãy sao cho các quyển sách thuộc cùng một môn không được xếp cạnh nhau.
Đề thi thử tốt nghiệp THPT 2020 môn Toán trường chuyên Nguyễn Tất Thành - Kon Tum
Thứ Bảy ngày 30 tháng 05 năm 2020, trường THPT chuyên Nguyễn Tất Thành, tỉnh Kon Tum tổ chức kỳ thi thử tốt nghiệp Trung học Phổ thông môn Toán năm học 2019 – 2020. Đề thi thử tốt nghiệp THPT 2020 môn Toán trường chuyên Nguyễn Tất Thành – Kon Tum có cấu trúc bám sát đề tham khảo tốt nghiệp THPT 2020 môn Toán do Bộ GD&ĐT công bố, đề thi có đáp án mã đề 132, 245, 376, 498. Trích dẫn đề thi thử tốt nghiệp THPT 2020 môn Toán trường chuyên Nguyễn Tất Thành – Kon Tum : + Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh a, SA = a√3 và SA vuông góc với mặt phẳng đáy. Mặt phẳng (P) đi qua điểm A và vuông góc với SC cắt SB, SC, SD lần lượt tại B’, C’, D’. Thể tích khối chóp S.AB’C’D’ bằng? + Đề cương ôn tập chương II môn Lịch sử lớp 12 có 30 câu. Trong đề thi giáo viên có chọn ngẫu nhiên 10 câu trong 30 câu đó. Một học sinh chỉ nắm được 25 câu trong đề cương đó. Xác suất để trong đề thi có ít nhất 9 câu hỏi nằm trong 25 câu mà học sinh đã nắm được là (kết quả làm tròn đến hàng phần nghìn). [ads] + Một người tham gia một chương trình bảo hiểm An sinh xã hội của công ty Bảo Việt với thể lệ như sau: Cứ đến đầu tháng 1 hàng năm người đó đóng vào công ty là 12 triệu đồng với lãi suất hàng năm không đổi là 6% / năm. Theo hợp đồng bảo hiểm, sau ít nhất 18 năm thì người đó sẽ được rút tiền về. Biết rằng người đó đóng bảo hiểm từ đầu năm 2002, hỏi đến hết năm 2020 người đó rút về thì được tất cả bao nhiêu triệu đồng? Kết quả làm tròn đến hai chữ số phần thập phân. A. 403,32 (triệu đồng). B. 393,12 (triệu đồng). C. 358,87 (triệu đồng). D. 429,43 (triệu đồng).
Đề thi thử tốt nghiệp THPT 2020 môn Toán trường THPT Diễn Châu 2 - Nghệ An
Đề thi thử tốt nghiệp THPT 2020 môn Toán trường THPT Diễn Châu 2 – Nghệ An mã đề 107 gồm 07 trang với 50 câu trắc nghiệm, thời gian làm bài thi là 90 phút, đề có cấu trúc và độ khó tương tự đề minh họa tốt nghiệp THPT 2020 môn Toán. Trích dẫn đề thi thử tốt nghiệp THPT 2020 môn Toán trường THPT Diễn Châu 2 – Nghệ An : + Để hỗ trợ cho các đối tượng gặp khó khăn trong đại dịch Covid-19 vừa qua, Chính phủ đã triển khai gói cứu trợ lên đến 62 nghìn tỉ đồng. Các chuyên gia ước tính số người đăng kí gói cứu trợ kể từ ngày đầu tiên đến ngày thứ t là f(t) = 300t^2 – 10t^3. Nếu coi f(t) là hàm số xác định trên [0;+∞) thì f'(t) được xem là số lượng người đăng kí cứu trợ (người / ngày) tại thời điểm t. Xác định ngày mà số lượng người đăng kí là lớn nhất? [ads] + Xét tập X = {0;1;2;3;4;8;9}. Lập số tự nhiên có 4 chữ số phân biệt. Chọn một số trong số các số lập được. Tính xác suất để số được chọn thuộc khoảng (2019;9102). + Một khúc gỗ hình trụ cao 30 cm, người ta tiện thành một hình nón có đáy trùng với một đáy hình trụ và đỉnh là tâm của đáy còn lại. Biết phần gỗ bỏ đi có thể tích là 300 cm3. Tính diện tích đáy của hình nón tạo thành?
Đề thi thử tốt nghiệp THPT 2020 môn Toán lần 1 trường THPT chuyên Bến Tre
Chiều thứ Bảy ngày 13 tháng 06 năm 2020, trường THPT chuyên Bến Tre, tỉnh Bến Tre tổ chức kỳ thi thử tốt nghiệp Trung học Phổ thông môn Toán năm học 2019 – 2020 lần thi thứ nhất. Đề thi thử tốt nghiệp THPT 2020 môn Toán lần 1 trường THPT chuyên Bến Tre mã đề 245 gồm có 07 trang với 50 câu trắc nghiệm, thời gian làm bài thi là 90 phút, đề thi có đáp án và lời giải chi tiết (lời giải được biên soạn bởi quý thầy, cô giáo nhóm Toán VD – VDC). Trích dẫn đề thi thử tốt nghiệp THPT 2020 môn Toán lần 1 trường THPT chuyên Bến Tre : + Cho hàm số y = f(x). Đồ thị hàm số y = f'(x) như hình vẽ. Cho bất phương trình 3f(x) ≥ x^3 – 3x + m (với m là tham số thực). Điều kiện cần và đủ để bất phương trình 3f(x) ≥ x^3 – 3x + m đúng với mọi x thuộc [-√3;√3] là? [ads] + Cho hàm số y = f(x) biết hàm số f(x) có đạo hàm f'(x) và hàm số y = f'(x) có đồ thị như hình vẽ . Đặt g(x) = f(x + 1). Kết luận nào sau đây đúng? A. Hàm số g(x) đồng biến trên khoảng (3;4). B. Hàm số g(x) đồng biến trên khoảng (0;1). C. Hàm số g(x) nghịch biến trên khoảng (2;+vc). D. Hàm số g(x) nghịch biến trên khoảng (4;6). + Kí hiệu Pn, kAn, kCn lần lượt là số các hoán vị của tập có n phần tử, số các chỉnh hợp chập k của tập có n phần tử, số các tổ hợp chập k của tập có n phần tử với k, n thuộc N, 1 ≤ k ≤ n. Trong các đẳng thức sau, đẳng thức nào sai?