Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Bộ đề phát triển đề minh họa tốt nghiệp THPT 2021 môn Toán - Lê Quang Xe

Tài liệu gồm 65 trang, được biên soạn bởi thầy giáo Lê Quang Xe, tuyển tập 4 đề phát triển đề minh họa tốt nghiệp THPT 2021 môn Toán, có đáp án và lời giải chi tiết; đây là các đề thi có cấu trúc được xây dựng dựa trên ma trận đề minh họa tốt nghiệp THPT 2021 môn Toán mà Bộ Giáo dục và Đào tạo công bố hôm 31 tháng 03 năm 2021. Cấu trúc đề minh họa tốt nghiệp THPT 2021 môn Toán: + Hoán vị – Chỉnh hợp – Tổ hợp. + Cấp số cộng (nhân). + Tính đơn điệu của hàm số (dựa vào BBT). + Cực trị của hàm số khi biết BBT. + Đếm số cực trị của hàm số khi biết bảng dấu đạo hàm. + Tiệm cận của đồ thị. + Nhận dạng hàm số khi biết đồ thị. + Sự tương giao đồ thị (tìm hoành độ hoặc tung độ giao điểm). + Logarit (tính và rút gọn biểu thức). + Hàm số mũ – logarits (tính đạo hàm hàm mũ). + Lũy thừa (biểu diễn căn bậc n dưới dạng lũy thừa). + Phương trình mũ – logarits (tìm nghiệm của phương trình mũ). + Phương trình mũ – logarits (tìm nghiệm của phương trình logarits). + Tính nguyên hàm – tích phân (nguyên hàm hàm đa thức). + Tính nguyên hàm – tích phân (nguyên hàm lượng giác). + Tính nguyên hàm – tích phân (tính tích phân dựa vào tính chất). + Tính nguyên hàm – tích phân (tính tích của phân hàm đa thức). + Số phức (các khái niệm cơ bản về số phức). + Số phức (các phép toán về số phức). + Số phức (các khái niệm cơ bản về số phức). + Thể tích khối đa diện (khối chóp biết chiều cao và diện tích đáy). + Thể tích khối đa diện (khối lăng trụ biết chiều cao và diện tích đáy). + Thể tích nón – trụ – cầu (thể tích khối nón). + Diện tích nón – trụ – cầu (diện tích khối trụ). + Hệ Oxyz (tọa độ trung điểm đoạn). + Hệ Oxyz (tìm tâm và tính bán kính mặt cầu). + Phương trình mặt phẳng (xét vị trí của điểm và măt phẳng). + Phương trình đường thẳng (tìm vectơ chỉ phương). + Xác suất của biến cố. + Tính đơn điệu của hàm số. + GTLN – GTNN của hàm số trên đoạn. + Bất phương trình mũ – logarits. + Tính nguyên hàm – tích phân (khi biết tích phân khác). + Số phức (các phép toán – tính modun của tích). + Góc giữa đường thẳng và mặt phẳng. + Khoảng cách (khoảng cách từ một điểm đến một mặt phẳng). + Hệ Oxyz (lập phương trình mặt cầu). + Phương trình đường thẳng (lập phương trình đường thẳng qua hai điểm). + GTLN – GTNN của hàm số hợp trên đoạn khi biết đồ thị y’. + Bất phương trình mũ – logarits (bất phương trình liên quan đến hai biến số). + Tính tích phân hàm hợp khi biết hàm f(x) cho bởi nhiều hàm. + Số phức (tìm số số phức thỏa mãn điều kiện cho trước). + Thể tích khối đa diện (khối chóp). + Diện tích nón – trụ – cầu (diện tích khối trụ). + Phương trình mặt phẳng, phương trình đường thẳng trong không gian (lập phương trình đường thẳng thỏa mãn yêu cầu). + Số điểm cực trị của hàm hợp khi biết BBT của f'(x). + Phương trình mũ – logarits (đếm số nghiệm của phương trình). + Ứng dụng tích phân (tính tỉ số diện tích hình phẳng). + Min – max số phức. + Hệ Oxyz, phương trình mặt phẳng, phương trình đường thẳng trong không gian.

Nguồn: toanmath.com

Đọc Sách

Đề thi thử THPT Quốc gia 2017 môn Toán trường THPT Hàm Rồng - Thanh Hóa
Đề thi thử THPT Quốc gia 2017 môn Toán trường THPT Hàm Rồng – Thanh Hóa gồm 50 câu hỏi trắc nghiệm, đáp án tại phần comment bên dưới. Trích một số bài toán trong đề thi: + Cho số phức z = 6 + 7i. Số phức liên hợp của z có điểm biểu diễn M là? + Trong trung tâm công viên có một khuôn viên hình elip có độ dài trục lớn bằng 16m, độ dài trục bé bằng 10m. Giữa khuôn viên là một đài phun nước hình tròn có đường kính 8m, phần còn lại của khuôn viên người ta thả cá. Số cá thả vào khuôn viên đó gần nhất với số nào dưới đây, biết rằng mật độ thả cá là 5 con trên 1m2 mặt nước. + Từ một khúc gỗ hình trụ, đường kính bằng 8 cần xẻ thành một chiếc xà có tiết diện ngang là hình vuông và 4 miếng phụ kích thước x, y như hình vẽ. Hãy xác định x để diện tích sử dụng theo tiết diện ngang là lớn nhất.
Bộ đề thi thử THPT Quốc gia 2017 môn Toán trường THPT Lý Thường Kiệt - Yên Bái
Bộ đề thi thử THPT Quốc gia 2017 môn Toán trường THPT Lý Thường Kiệt – Yên Bái gồm 22 đề, mỗi đề gồm 50 câu hỏi trắc nghiệm, có đáp án.
Đề thi thử THPT Quốc gia 2017 môn Toán trường THPT chuyên Nguyễn Đình Chiểu - Đồng Tháp
Đề thi thử THPT Quốc gia 2017 môn Toán trường THPT chuyên Nguyễn Đình Chiểu – Đồng Tháp gồm 50 câu hỏi trắc nghiệm, có đáp án kèm lời giải chi tiết. Trích một số bài toán trong đề thi: + Giả sử cứ sau một năm diện tích rừng nước ta giảm đi x phần trăm diện tích hiện có. Hỏi sau 4 năm diện tích rừng nước ta sẽ là bao nhiêu phần diện tích hiện nay? + Hình trụ có thiết diện qua trục là hình chữ nhật với chiều dài bằng 4/3 chiều rộng. Tính tỉ số thể tích của hình trụ nội tiếp hình cầu và thể tích hình cầu đó. + Một bóng đèn huỳnh quang dài 120 cm, đường kính của đường tròn đáy là 2cm được đặt khít vào một ống giấy cứng dạng hình hộp chữ nhật (hình bên). Tính diện tích phần giấy cứng dùng để làm hộp (hộp hở hai đầu).
Đề thi thử THPT Quốc gia 2017 môn Toán trường THPT Tiên Lãng - Hải Phòng
Đề thi thử THPT Quốc gia 2017 môn Toán trường THPT Tiên Lãng – Hải Phòng gồm 50 câu hỏi trắc nghiệm, có đáp án kèm lời giải chi tiết. Trích một số bài toán trong đề thi: + Để đầu tư dự án trồng rau sạch theo công nghệ mới, ông An đã làm hợp đồng xin vay vốn ngân hàng với số tiền 800 triệu đồng với lãi suất x %/năm, điều kiện kèm theo của hợp đồng là số tiền lãi tháng trước sẽ được tính làm vốn để sinh lãi cho tháng sau. Sau hai năm thành công với dự án rau sạch của mình, ông An đã thanh toán hợp đồng ngân hàng số tiền là 1.058 triệu đồng. Hỏi lãi suất trong hợp đồng giữa ông An và ngân hàng là bao nhiêu?. + Một ngôi biệt thự có 10 cây cột nhà hình trụ tròn, tất cả đều có chiều cao bằng 4,2 m. Trong đó, 4 cây cột trước đại sảnh có đường kính bằng 40 cm, 6 cây cột còn lại bên thân nhà có đường kính bằng 26 cm. Chủ nhà dùng loại sơn giả đá để sơn 10 cây cột đó. Nếu giá của một loại sơn giả đá là 380.000 đ/m2 (kể cả phần thi công) thì người chủ phải chi ít nhất bao nhiêu tiền để sơn cột 10 cây cột nhà đó (làm tròn đến đơn vị nghìn đồng)? + Chi phí nhiên liệu của một chiếc tầu chạy trên sông được chia làm hai phần. Phần thứ nhất không phụ thuộc vào vận tốc và bằng 480 nghìn đồng trên 1 giờ. Phần thứ hai tỉ lệ thuận với lập phương của vận tốc, khi v =10 (km/giờ) thì phần thứ hai bằng 30 nghìn đồng/giờ. Hãy xác định vận tốc của tàu để tổng chi phí nguyên liệu trên 1 km đường sông là nhỏ nhất (kết quả làm tròn đến số nguyên).