Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Bộ đề phát triển đề minh họa tốt nghiệp THPT 2021 môn Toán - Lê Quang Xe

Tài liệu gồm 65 trang, được biên soạn bởi thầy giáo Lê Quang Xe, tuyển tập 4 đề phát triển đề minh họa tốt nghiệp THPT 2021 môn Toán, có đáp án và lời giải chi tiết; đây là các đề thi có cấu trúc được xây dựng dựa trên ma trận đề minh họa tốt nghiệp THPT 2021 môn Toán mà Bộ Giáo dục và Đào tạo công bố hôm 31 tháng 03 năm 2021. Cấu trúc đề minh họa tốt nghiệp THPT 2021 môn Toán: + Hoán vị – Chỉnh hợp – Tổ hợp. + Cấp số cộng (nhân). + Tính đơn điệu của hàm số (dựa vào BBT). + Cực trị của hàm số khi biết BBT. + Đếm số cực trị của hàm số khi biết bảng dấu đạo hàm. + Tiệm cận của đồ thị. + Nhận dạng hàm số khi biết đồ thị. + Sự tương giao đồ thị (tìm hoành độ hoặc tung độ giao điểm). + Logarit (tính và rút gọn biểu thức). + Hàm số mũ – logarits (tính đạo hàm hàm mũ). + Lũy thừa (biểu diễn căn bậc n dưới dạng lũy thừa). + Phương trình mũ – logarits (tìm nghiệm của phương trình mũ). + Phương trình mũ – logarits (tìm nghiệm của phương trình logarits). + Tính nguyên hàm – tích phân (nguyên hàm hàm đa thức). + Tính nguyên hàm – tích phân (nguyên hàm lượng giác). + Tính nguyên hàm – tích phân (tính tích phân dựa vào tính chất). + Tính nguyên hàm – tích phân (tính tích của phân hàm đa thức). + Số phức (các khái niệm cơ bản về số phức). + Số phức (các phép toán về số phức). + Số phức (các khái niệm cơ bản về số phức). + Thể tích khối đa diện (khối chóp biết chiều cao và diện tích đáy). + Thể tích khối đa diện (khối lăng trụ biết chiều cao và diện tích đáy). + Thể tích nón – trụ – cầu (thể tích khối nón). + Diện tích nón – trụ – cầu (diện tích khối trụ). + Hệ Oxyz (tọa độ trung điểm đoạn). + Hệ Oxyz (tìm tâm và tính bán kính mặt cầu). + Phương trình mặt phẳng (xét vị trí của điểm và măt phẳng). + Phương trình đường thẳng (tìm vectơ chỉ phương). + Xác suất của biến cố. + Tính đơn điệu của hàm số. + GTLN – GTNN của hàm số trên đoạn. + Bất phương trình mũ – logarits. + Tính nguyên hàm – tích phân (khi biết tích phân khác). + Số phức (các phép toán – tính modun của tích). + Góc giữa đường thẳng và mặt phẳng. + Khoảng cách (khoảng cách từ một điểm đến một mặt phẳng). + Hệ Oxyz (lập phương trình mặt cầu). + Phương trình đường thẳng (lập phương trình đường thẳng qua hai điểm). + GTLN – GTNN của hàm số hợp trên đoạn khi biết đồ thị y’. + Bất phương trình mũ – logarits (bất phương trình liên quan đến hai biến số). + Tính tích phân hàm hợp khi biết hàm f(x) cho bởi nhiều hàm. + Số phức (tìm số số phức thỏa mãn điều kiện cho trước). + Thể tích khối đa diện (khối chóp). + Diện tích nón – trụ – cầu (diện tích khối trụ). + Phương trình mặt phẳng, phương trình đường thẳng trong không gian (lập phương trình đường thẳng thỏa mãn yêu cầu). + Số điểm cực trị của hàm hợp khi biết BBT của f'(x). + Phương trình mũ – logarits (đếm số nghiệm của phương trình). + Ứng dụng tích phân (tính tỉ số diện tích hình phẳng). + Min – max số phức. + Hệ Oxyz, phương trình mặt phẳng, phương trình đường thẳng trong không gian.

Nguồn: toanmath.com

Đọc Sách

Đề thi thử tốt nghiệp THPT 2020 môn Toán trường THPT Diễn Châu 2 - Nghệ An
Đề thi thử tốt nghiệp THPT 2020 môn Toán trường THPT Diễn Châu 2 – Nghệ An mã đề 107 gồm 07 trang với 50 câu trắc nghiệm, thời gian làm bài thi là 90 phút, đề có cấu trúc và độ khó tương tự đề minh họa tốt nghiệp THPT 2020 môn Toán. Trích dẫn đề thi thử tốt nghiệp THPT 2020 môn Toán trường THPT Diễn Châu 2 – Nghệ An : + Để hỗ trợ cho các đối tượng gặp khó khăn trong đại dịch Covid-19 vừa qua, Chính phủ đã triển khai gói cứu trợ lên đến 62 nghìn tỉ đồng. Các chuyên gia ước tính số người đăng kí gói cứu trợ kể từ ngày đầu tiên đến ngày thứ t là f(t) = 300t^2 – 10t^3. Nếu coi f(t) là hàm số xác định trên [0;+∞) thì f'(t) được xem là số lượng người đăng kí cứu trợ (người / ngày) tại thời điểm t. Xác định ngày mà số lượng người đăng kí là lớn nhất? [ads] + Xét tập X = {0;1;2;3;4;8;9}. Lập số tự nhiên có 4 chữ số phân biệt. Chọn một số trong số các số lập được. Tính xác suất để số được chọn thuộc khoảng (2019;9102). + Một khúc gỗ hình trụ cao 30 cm, người ta tiện thành một hình nón có đáy trùng với một đáy hình trụ và đỉnh là tâm của đáy còn lại. Biết phần gỗ bỏ đi có thể tích là 300 cm3. Tính diện tích đáy của hình nón tạo thành?
Đề thi thử tốt nghiệp THPT 2020 môn Toán lần 1 trường THPT chuyên Bến Tre
Chiều thứ Bảy ngày 13 tháng 06 năm 2020, trường THPT chuyên Bến Tre, tỉnh Bến Tre tổ chức kỳ thi thử tốt nghiệp Trung học Phổ thông môn Toán năm học 2019 – 2020 lần thi thứ nhất. Đề thi thử tốt nghiệp THPT 2020 môn Toán lần 1 trường THPT chuyên Bến Tre mã đề 245 gồm có 07 trang với 50 câu trắc nghiệm, thời gian làm bài thi là 90 phút, đề thi có đáp án và lời giải chi tiết (lời giải được biên soạn bởi quý thầy, cô giáo nhóm Toán VD – VDC). Trích dẫn đề thi thử tốt nghiệp THPT 2020 môn Toán lần 1 trường THPT chuyên Bến Tre : + Cho hàm số y = f(x). Đồ thị hàm số y = f'(x) như hình vẽ. Cho bất phương trình 3f(x) ≥ x^3 – 3x + m (với m là tham số thực). Điều kiện cần và đủ để bất phương trình 3f(x) ≥ x^3 – 3x + m đúng với mọi x thuộc [-√3;√3] là? [ads] + Cho hàm số y = f(x) biết hàm số f(x) có đạo hàm f'(x) và hàm số y = f'(x) có đồ thị như hình vẽ . Đặt g(x) = f(x + 1). Kết luận nào sau đây đúng? A. Hàm số g(x) đồng biến trên khoảng (3;4). B. Hàm số g(x) đồng biến trên khoảng (0;1). C. Hàm số g(x) nghịch biến trên khoảng (2;+vc). D. Hàm số g(x) nghịch biến trên khoảng (4;6). + Kí hiệu Pn, kAn, kCn lần lượt là số các hoán vị của tập có n phần tử, số các chỉnh hợp chập k của tập có n phần tử, số các tổ hợp chập k của tập có n phần tử với k, n thuộc N, 1 ≤ k ≤ n. Trong các đẳng thức sau, đẳng thức nào sai?
Đề thi thử THPT 2020 môn Toán lần 3 trường chuyên Quang Trung - Bình Phước
Thứ Năm ngày 02 tháng 07 năm 2020, trường THPT chuyên Quang Trung, thành phố Đồng Xoài, tỉnh Bình Phước tổ chức kỳ thi thử tốt nghiệp Trung học Phổ thông môn Toán năm học 2019 – 2020 lần thi thứ ba. Đề thi thử THPT 2020 môn Toán lần 3 trường THPT chuyên Quang Trung – Bình Phước mã đề 111 gồm 06 trang với 50 câu hỏi và bài toán dạng trắc nghiệm, thời gian làm bài 90 phút, đề thi có đáp án. Trích dẫn đề thi thử THPT 2020 môn Toán lần 3 trường THPT chuyên Quang Trung – Bình Phước : + Trên mỗi chiếc radio đều có vạch chia để người sử dụng dễ chọn được đúng sóng radio cần tìm. Biết rằng vạch chia ở vị trí cách vạch tận cùng bên trái một khoảng d (cm) thì ứng với tần số F = kad (kHz), trong đó k và a là hai hằng số được chọn sao cho vạch tận cùng bên trái ứng với tần số 53 (kHz), vạch tận cùng bên phải ứng với tần số 160 (kHz) và hai vạch này cách nhau 12 (cm). Người đó muốn mở chương trình ca nhạc có tần số là F = 120 (kHz) thì cần điều chỉnh đến vạch chia cách vị trí tận cùng bên trái một khoảng gần với số nào sau đây? [ads] + Cho hình trụ (H) có chiều cao bằng 2a và hai đáy là (O) và (O0). Trên đường tròn (O) có hai điểm A, B và trên đường tròn (O0) có hai điểm C, D sao cho ABCD là hình vuông và mặt phẳng (ABCD) tạo với đáy một góc 45◦. Tính thể tích khối trụ theo a. + Cho x, y là hai số thực, với y ≥ 0, thỏa mãn x2 + y2 = 1. Gọi m, M lần lượt là giá trị nhỏ nhất và lớn nhất của biểu thức P = 2x + 2y. Khi đó tổng m + M có dạng b/a + 2^(1+1/√a), với a, b nguyên dương, nguyên tố cùng nhau. Tính a + 2b.
Đề thi thử tốt nghiệp THPT 2020 lần 1 môn Toán trường Tư Nghĩa 1 - Quảng Ngãi
Đề thi thử tốt nghiệp THPT 2020 lần 1 môn Toán trường Tư Nghĩa 1 – Quảng Ngãi có cấu trúc bám sát đề tham khảo tốt nghiệp THPT 2020 môn Toán của Bộ Giáo dục và Đào tạo; đề có mã đề 465, gồm có 06 trang với 50 câu trắc nghiệm, thời gian làm bài 90 phút. Trích dẫn đề thi thử tốt nghiệp THPT 2020 lần 1 môn Toán trường Tư Nghĩa 1 – Quảng Ngãi : + Cho hình chóp S.ABC có thể tích bằng 2160 cm3. M là điểm tùy ý nằm bên trong tam giác ABC. Các đường thẳng qua M song song với SA, SB, SC cắt các mặt phẳng  (SBC), (SAC), (SAB ) tương ứng tại A’, B’, C’. Thể tích lớn nhất của khối tứ diện MA’B’C’ bằng? + Có 7 học sinh lớp A, 8 học sinh lớp B, 9 học sinh lớp C. Chọn ngẫu nhiên 8 học sinh lập thành một đội. Xác suất để 8 bạn được chọn có cả 3 lớp là? [ads] + Cho hình chóp S.ABCD có đáy là hình vuông vuông, AB = 2a. Tam giác SAB cân tại S và nằm trong mặt phẳng vuông góc với mặt phẳng đáy, SC hợp với đáy một góc 30 độ. Gọi M là trung điểm của AD. Khoảng cách giữa hai đường thẳng SC và BM bằng?