Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề tuyển sinh lớp 10 chuyên năm 2019 - 2020 môn Toán sở GDĐT Gia Lai

THCS. giới thiệu đến quý thầy, cô giáo cùng các bạn học sinh đề thi chính thức tuyển sinh vào lớp 10 chuyên năm học 2019 – 2020 môn Toán sở GD&ĐT Gia Lai, đề thi được dành cho các bạn học sinh đăng ký học các lớp không chuyên tại các trường THPT chuyên trực thuộc sở Giáo dục và Đào tạo tỉnh Gia Lai. Đề tuyển sinh lớp 10 chuyên năm 2019 – 2020 môn Toán sở GD&ĐT Gia Lai gồm 1 trang với 5 bài toán dạng tự luận, thời gian học sinh làm bài là 120 phút. Trích dẫn đề tuyển sinh lớp 10 chuyên năm 2019 – 2020 môn Toán sở GD&ĐT Gia Lai : + Cho phương trình x^2 + 2(m – 2)x + m^2 – 3m – 1 = 0, với m là tham số. a) Giải phương trình đã cho khi m = 1. b) Xác định giá trị của m để phương trình đã cho có hai nghiệm phân biệt x1, x2 sao cho x1^2 – x1x2 + x2^2 = 9. + Quãng đường AB dài 180 km. Cùng một lúc, hai ô tô khởi hành từ A đến B. Mỗi giờ ô tô thứ nhất chạy nhiều hơn ô tô thứ hai 10 km nên ô tô thứ nhất đến B trước ô tô thứ hai 36 phút. Tính vận tốc trung bình của mỗi ô tô. + Cho đường tròn (O) và điểm A nằm ngoài (O). Đường thẳng AC cắt đường tròn (O) tại hai điểm B và C (AB < AC). Qua A vẽ một đường thẳng không đi qua điểm O, cắt đường tròn (O) tại hai điểm D và E (AD < AE). Đường thẳng vuông góc với AC tại A cắt đường thẳng CE tại F. a) Chứng minh tứ giác ABEF nội tiếp đường tròn. b) Gọi M là giao điểm của đường thẳng FB và đường tròn (O) (M không trùng B). Chứng minh AC là đường trung trực của đoạn thẳng DM. c) Chứng minh CE.CF + AD.AE = AC^2.

Nguồn: toanmath.com

Đọc Sách

Đề tuyển sinh lớp 10 chuyên môn Toán (chuyên) năm 2020 2021 sở GDĐT Quảng Trị
Đề tuyển sinh lớp 10 chuyên môn Toán (chuyên) năm 2020 – 2021 sở GD&ĐT Quảng Trị gồm có 01 trang với 05 bài toán dạng tự luận, thời gian học sinh làm bài thi là 150 phút, kỳ thi được diễn ra vào ngày 21 tháng 07 năm 2020. Trích dẫn đề tuyển sinh lớp 10 chuyên môn Toán (chuyên) năm 2020 – 2021 sở GD&ĐT Quảng Trị : + Cho các parabol (P1) : y = mx2, (P2) : y = nx2 (m khác n). Lấy các điểm A, B thuộc (P1) và C, D thuộc (P2) sao cho ABCD là hình vuông nhận Oy làm trục đối xứng. Tính diện tích hình vuông ABCD. + Chứng minh rằng có thể chọn 3 số a1, a2, a3 trong 7 số nguyên tố phân biệt bất kì sao cho P = (a1 − a2) (a1 − a3) (a2 − a3) chia hết cho 216. + Cho các số thực a, b, c thỏa mãn 3a2 + 3b2 + 8c2 = 32. Tìm giá trị lớn nhất của biểu thức P = ab + bc + ca.
Đề tuyển sinh lớp 10 chuyên môn Toán (chuyên) năm 2020 2021 sở GDĐT Quảng Nam
Đề tuyển sinh lớp 10 chuyên môn Toán (chuyên) năm 2020 – 2021 sở GD&ĐT Quảng Nam gồm có 01 trang với 06 bài toán dạng tự luận, thời gian học sinh làm bài thi là 150 phút, kỳ thi được diễn ra vào ngày 23 – 25 tháng 07 năm 2020. Trích dẫn đề tuyển sinh lớp 10 chuyên môn Toán (chuyên) năm 2020 – 2021 sở GD&ĐT Quảng Nam : + Cho Parabol (P) : y = x2 và đường thẳng (d) : y = 2x + 3. Tìm giá trị của tham số m biết rằng đường thẳng (d0) : y = 4x + m cắt đường thẳng (d) tại điểm có hoành độ dương thuộc (P). + Cho ba số thực dương x, y, z thỏa mãn x + y + z = 3. Tìm giá trị lớn nhất của biểu thức H = 3xy + yz2 + zx2 − x2y. + Cho tam giác ABC cân tại A (AB < AC), M là trung điểm của AC, G là trọng tâm của tam giác ABM. 1. Gọi O là tâm đường tròn ngoại tiếp tam giác ABC. Chứng minh OG vuông góc với BM. 2. Lấy điểm N trên cạnh BC sao cho BN = BA. Vẽ NK vuông góc với AB tại K, BE vuông góc với AC tại E, KF vuông góc với BC tại F. Tính tỉ số BE/KF.
Đề tuyển sinh lớp 10 môn Toán (chuyên) năm 2020 - 2021 sở GDĐT Thái Nguyên
Đề tuyển sinh lớp 10 môn Toán (chuyên) năm 2020 – 2021 sở GD&ĐT Thái Nguyên gồm có 01 trang với 07 bài toán dạng tự luận, thời gian học sinh làm bài thi là 150 phút, kỳ thi được diễn ra vào ngày … tháng 07 năm 2020. Trích dẫn đề tuyển sinh lớp 10 môn Toán (chuyên) năm 2020 – 2021 sở GD&ĐT Thái Nguyên : + Cho số nguyên dương n thỏa mãn 2n + 1 và 3n + 1 là các số chính phương. Chứng minh 15n + 8 là hợp số. + Bạn Chi được thưởng mỗi ngày ít nhất một chiếc kẹo, nhưng trong 7 ngày liên tiếp, tổng số kẹo Chi nhận được không quá 10 chiếc. Chứng minh trong một số ngày liên tiếp, tổng số kẹo Chi nhận được là 27 chiếc. + Cho đường tròn (I;r) nội tiếp tam giác ABC. Điểm M thuộc cạnh BC với M khác B, M khác C. Đường tròn (I1;r1) nội tiếp tam giác AMC. Đường thẳng song song với BC, tiếp xúc với đường tròn (I1;r1) cắt các cạnh AB, AC lần lượt tại B0, C0. Gọi N là giao điểm của AM với B0C0, đường tròn (I2;r2) nội tiếp tam giác AB0N. Chứng minh: 1. Bốn điểm A, I, I1, I2 cùng nằm trên một đường tròn. 2. r = r1 + r2.
Đề tuyển sinh lớp 10 môn Toán (chuyên) năm 2020 - 2021 sở GDĐT Tây Ninh
Đề tuyển sinh lớp 10 môn Toán (chuyên) năm 2020 – 2021 sở GD&ĐT Tây Ninh gồm có 01 trang với 09 bài toán dạng tự luận, thời gian học sinh làm bài thi là 150 phút, kỳ thi được diễn ra vào ngày 18 tháng 07 năm 2020. Trích dẫn đề tuyển sinh lớp 10 môn Toán (chuyên) năm 2020 – 2021 sở GD&ĐT Tây Ninh : + Cho tam giác ABC có ABC = 30◦, ACB = 15◦ và M là trung điểm của BC. Lấy điểm D thuộc cạnh BC sao cho CD = AB. Tính số đo góc MAD. + Cho a, b, c là các số thực có tổng bằng 0 và −1 ≤ a, b, c ≤ 1. Tìm giá trị lớn nhất của biểu thức P = a2 + 2b2 + c2. + Cho tam giác ABC nhọn, không cân có O là tâm đường tròn ngoại tiếp và AH là đường cao với H thuộc BC. Gọi M là trung điểm cạnh BC và K là hình chiếu vuông góc của M trên cạnh AC. Đường tròn tâm I ngoại tiếp tam giác ABK cắt lại cạnh BC tại D. 1. Chứng minh CH.CM = CB.CD. 2. Gọi N là trung điểm của AB. Chứng minh I là trung điểm của ON.