Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Kĩ thuật chọn hàm trong các bài toán tích phân từ NB - TH đến VD - VDC

Tài liệu gồm 17 trang, được biên soạn bởi các tác giả: Minh Chung và Dương Đình Tuấn, trình bày kĩ thuật chọn hàm trong các bài toán tích phân từ nhận biết – thông hiểu đến vận dụng – vận dụng cao; đây là một kĩ thuật giải nhanh trắc nghiệm rất hay, giúp đưa một bài toán tích phân khó về một bài toán chọn hàm đơn giản, rút ngắn được thời gian giải toán; giúp học sinh học tốt chương trình Giải tích 12 chương 3: nguyên hàm, tích phân và ứng dụng và ôn thi THPT Quốc gia môn Toán. Dạng toán 1. Hàm hằng. Dạng toán 2. Hàm bậc nhất. Dạng toán 3. Hàm bậc hai. Dạng toán 4. Hàm chẵn. + Dạng 4.1. Hàm chẵn một giả thiết. + Dạng 4.2. Hàm chẵn hai giả thiết. Dạng toán 5. Hàm lẻ. + Dạng 5.1. Hàm lẻ một giả thiết. + Dạng 5.2. Hàm lẻ hai giả thiết. [ads] Dạng toán 6. Hàm tuần hoàn với chu kì T một giả thiết Dạng toán 7. Hàm tuần hoàn với chu kì T và là hàm lẻ một giả thiết. Dạng toán 8. Hàm tuần hoàn với chu kì T và là hàm chẵn một giả thiết. Dạng toán 9. Hàm tuần hoàn với chu kì T và là hàm lẻ một giả thiết. Dạng toán 10. Với bài toán có giả thiết như sau: $f(x) = f(a + b – x)$, $\int_b^a f (x)dx = c.$ Dạng toán 11. Với bài toán có giả thiết như sau: $f(x).f(a + b – x) = g(x) > 0.$ Dạng toán 12. Với bài toán có giả thiết như sau: $\int_a^b {(f(} x){)^2}dx = \alpha $, $\int_a^b f (x).g(x)dx = \beta .$ Phụ lục: Một số thủ thuật giải nhanh các dạng toán tích phân. Xem thêm : Bài toán logarit qua nhiều góc nhìn (Tài liệu cùng tác giả).

Nguồn: toanmath.com

Đọc Sách

10 dạng tích phân thường gặp trong đề thi Quốc gia - Nguyễn Thanh Tùng
Trong các các kì thi Đại Học – Cao Đẳng câu tích phân luôn mặc định xuất hiện trong đề thi môn Toán. Tích phân không phải là câu hỏi khó, đây là một bài toán nhẹ nhàng, mang tính chất “cho điểm”. Vì vậy việc mất điểm sẽ trở nên “vô duyên” với những ai đã bỏ chút thời gian đọc tài liệu. Ở bài viết nhỏ này sẽ cung cấp tới các em các dạng tích phân thường gặp xuất hiện trong các kì thi Đại Học – Cao Đẳng (và đề thi cũng sẽ không nằm ngoài các dạng này). Với cách giải tổng quát cho các dạng, các ví dụ minh họa đi kèm, cùng với lượng bài tập đa dạng, phong phú. Mong rằng sau khi đọc tài liệu, việc đứng trước một bài toán tích phân sẽ không còn là rào cản đối với các em. Chúc các em thành công! Trong bài viết này sẽ giới thiệu tới các em 8 phần: [ads] I. SƠ ĐỒ CHUNG GIẢI BÀI TOÁN TÍCH PHÂN II. CÁC CÔNG THỨC NGUYÊN HÀM CẦN NHỚ III. LỚP TÍCH PHÂN HỮU TỈ VÀ TÍCH PHÂN LƯỢNG GIÁC CƠ BẢN IV. 10 DẠNG TÍCH PHÂN TRONG CÁC ĐỀ THI ĐẠI HỌC – CAO ĐẲNG V. ỨNG DỤNG TÍCH PHÂN VI. CÁC LỚP TÍCH PHÂN ĐẶC BIỆT VÀ TÍCH PHÂN TRUY HỒI VII. DÙNG TÍCH PHÂN ĐỂ CHỨNG MINH ĐẲNG THỨC CHỨA nCk VIII. KINH NGHIỆM GIẢI BÀI TOÁN TÍCH PHÂN ĐẠI HỌC