Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi thử Toán vào lớp 10 lần 2 năm 2024 - 2025 phòng GDĐT Thái Hòa - Nghệ An

THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi thử môn Toán tuyển sinh vào lớp 10 THPT lần 2 năm học 2024 – 2025 phòng Giáo dục và Đào tạo thị xã Thái Hòa, tỉnh Nghệ An; đề thi có đáp án và hướng dẫn chấm điểm. Trích dẫn Đề thi thử Toán vào lớp 10 lần 2 năm 2024 – 2025 phòng GD&ĐT Thái Hòa – Nghệ An : + Hai đội công nhân cùng làm chung một công việc thì sau 15 ngày làm xong. Nếu đội thứ nhất làm riêng trong 6 ngày rồi dừng lại và đội thứ hai làm tiếp công việc đó trong 10 ngày thì cả hai đội hoàn thành được 50% công việc. Hỏi nếu mỗi đội làm riêng thì trong bao nhiêu ngày mới xong công việc trên? + Một thùng nước có dạng hình trụ với chiều cao 1,8m và đường kính đáy 1,2 m. Người ta sơn toàn bộ phía ngoài mặt xung quanh của thùng nước này (trừ hai mặt đáy). Tính diện tích bề mặt được sơn của thùng nước đó (lấy π ≈ 3,14). + Cho đường tròn (O) và dây BC cố định không đi qua tâm O. Điểm A di động trên cung lớn BC sao cho tam giác ABC nhọn. Các đường cao AD, BE và CF của tam giác ABC cắt nhau tại điểm H. Gọi I là giao điểm của AD và EF. 1) Chứng minh CEHD là tứ giác nội tiếp. 2) Chứng minh DEH FEH và 112 DH DA DI. 3) Tia AD cắt đường tròn (O) tại điểm M và tia ME cắt đường tròn (O) tại điểm N (M khác A và N khác M). Gọi K là giao điểm của BN và EF. Chứng minh đường thẳng AK luôn đi qua một điểm cố định khi A thay đổi.

Nguồn: toanmath.com

Đọc Sách

Đề tuyển sinh lớp 10 THPT năm 2019 - 2020 môn Toán sở GDĐT Long An
Kỳ thi tuyển sinh vào lớp 10 khối Trung học Phổ thông do sở Giáo dục và Đào tạo tỉnh Long An tổ chức là một trong những kỳ thi quan trọng bậc nhất trong quá trình học tập của học sinh tỉnh nhà, đánh dấu quá trình tốt nghiệp khối Trung học Cơ sở và là căn cứ để xét tuyển các em vào các trường Trung học Phổ thông trên địa bàn tỉnh Long An. Một trong những môn thi rất quan trọng và bắt buộc trong kỳ thi này chính là môn Toán. Để quý thầy, cô giáo, quý vị phụ huynh và các em học sinh tham khảo, THCS. giới thiệu nội dung đề thi và lời giải chi tiết đề thi tuyển sinh vào lớp 10 hệ THPT năm học 2019 – 2020 môn Toán sở GD&ĐT Long An, kỳ thi được diễn ra vào ngày …/06/2019. Trích dẫn đề tuyển sinh lớp 10 THPT năm 2019 – 2020 môn Toán sở GD&ĐT Long An : + Trong mặt phẳng tọa độ Oxy, cho Parabol (P): y = 2x^2 và đường thẳng (d): y = 2x + 4. 1. Vẽ Parabol (P) và đường thẳng (d) trên cùng một mặt phẳng tọa độ Oxy. 2.Tìm tọa độ giao điểm của Parabol (P) và đường thẳng (d) bằng phép tính. 3. Viết phương trình đường thẳng (d’): y = ax + b. Biết rằng (d’) song song với (d) và (d1) và đi qua điểm N(2;3). [ads] + Cho phương trình (ẩn x): x^2 – 6x + m = 0. a) Tìm giá trị m để phương trình có hai nghiệm phân biệt x1, x2. b) Tìm giá trị m để phương trình có hai nghiệm phân biệt x1, x2 thỏa mãn điều kiện x1^2 – x2^2 = 12. + Cho tam giác ABC vuông tại A có đường cao AH, biết AB = 5cm, BH = 3cm. Tính AH, AC và sinCAH.
Đề tuyển sinh lớp 10 THPT năm 2019 - 2020 môn Toán sở GDĐT Lào Cai
Kỳ thi tuyển sinh vào lớp 10 khối Trung học Phổ thông do sở Giáo dục và Đào tạo tỉnh Lào Cai tổ chức là một trong những kỳ thi quan trọng bậc nhất trong quá trình học tập của học sinh tỉnh nhà, đánh dấu quá trình tốt nghiệp khối Trung học Cơ sở và là căn cứ để xét tuyển các em vào các trường Trung học Phổ thông trên địa bàn tỉnh Lào Cai. Một trong những môn thi rất quan trọng và bắt buộc trong kỳ thi này chính là môn Toán. Để quý thầy, cô giáo, quý vị phụ huynh và các em học sinh tham khảo, THCS. giới thiệu nội dung đề thi và lời giải chi tiết đề thi tuyển sinh vào lớp 10 hệ THPT năm học 2019 – 2020 môn Toán sở GD&ĐT Lào Cai, kỳ thi được diễn ra vào ngày …/06/2019. Trích dẫn đề tuyển sinh lớp 10 THPT năm 2019 – 2020 môn Toán sở GD&ĐT Lào Cai : + Cho đường tròn (O), điểm M nằm ngoài đường tròn (O), kẻ hai tiếp tuyến MB, MC (B và C là các tiếp điểm) với đường tròn. Trên cung lớn BC lấy điểm A sao cho AB < AC. Từ điểm M kẻ đường thẳng song song với AB, đường thẳng này cắt đường tròn (O) tại D và E (MD < ME), cắt BC tại F, cắt AC tại I. a) Chứng minh tứ giác MBOC nội tiếp. b) Chứng minh FD.FE = FB.FC, FI > FE = FD.FE. c) Đường thẳng OI cắt đường tròn (O) tại P và Q (P thuộc cung nhỏ AB). Đường thẳng QF cắt đường tròn (O) tại K (K khác Q). Chứng minh 3 điểm P, K, M thẳng hàng. [ads] + Cho đường thẳng (d): y = x – 1 và parabol (P): y = 3x^2. a) Tìm tọa độ A thuộc parabol (P) biết điểm A có hoành độ x = -1. b) Tìm b để đường thẳng (d) và đường thẳng (d’): y = 1/2.x + b cắt nhau tại một điểm trên trục hoành. + Tìm các giá trị của tham số m để phương trình x^2 – 2(m – 1)x + m^2 = 0 có hai nghiệm phân biệt x1, x2 thỏa mãn hệ thức (x1 – x2)^2 + 6m = x1 – 2×2.
Đề tuyển sinh lớp 10 THPT năm 2019 - 2020 môn Toán sở GDĐT Lai Châu
Kỳ thi tuyển sinh vào lớp 10 khối Trung học Phổ thông do sở Giáo dục và Đào tạo tỉnh Lai Châu tổ chức là một trong những kỳ thi quan trọng bậc nhất trong quá trình học tập của học sinh tỉnh nhà, đánh dấu quá trình tốt nghiệp khối Trung học Cơ sở và là căn cứ để xét tuyển các em vào các trường Trung học Phổ thông trên địa bàn tỉnh Lai Châu. Một trong những môn thi rất quan trọng và bắt buộc trong kỳ thi này chính là môn Toán. Để quý thầy, cô giáo, quý vị phụ huynh và các em học sinh tham khảo, THCS. giới thiệu nội dung đề thi và lời giải chi tiết đề thi tuyển sinh vào lớp 10 hệ THPT năm học 2019 – 2020 môn Toán sở GD&ĐT Lai Châu, kỳ thi được diễn ra vào ngày …/06/2019. Trích dẫn đề tuyển sinh lớp 10 THPT năm 2019 – 2020 môn Toán sở GD&ĐT Lai Châu : + Quãng đường AB dài 60km, một người đi xe đạp từ A đến B với vận tốc và thời gian quy định. Sau khi đi được nửa quãng đường người đó giảm vận tốc 5km/h trên nửa quãng đường còn lại. Vì vậy, người đó đã đến B chậm hơn quy định 1 giờ. Tính vận tốc và thời gian quy định của người đó. [ads] + Giải phương trình và hệ phương trình sau: a) x^2 – 6x + 5 = 0. b) x + y = 2 và 2x – y = 1. + Cho phương trình: 2x^2 + (2m – 1)x + m – 1 = 0 trong đó m là tham số. a) Giải phương trình khi m = 2 . b) Tìm m để phương trình có hai ngiệm thỏa mãn: 4×1^2 + 4×2^2 + 2x1x2 = 1.
Đề tuyển sinh lớp 10 THPT năm 2019 - 2020 môn Toán sở GDĐT Lâm Đồng
Kỳ thi tuyển sinh vào lớp 10 khối Trung học Phổ thông do sở Giáo dục và Đào tạo tỉnh Lâm Đồng tổ chức là một trong những kỳ thi quan trọng bậc nhất trong quá trình học tập của học sinh tỉnh nhà, đánh dấu quá trình tốt nghiệp khối Trung học Cơ sở và là căn cứ để xét tuyển các em vào các trường Trung học Phổ thông trên địa bàn tỉnh Lâm Đồng. Một trong những môn thi rất quan trọng và bắt buộc trong kỳ thi này chính là môn Toán. Để quý thầy, cô giáo, quý vị phụ huynh và các em học sinh tham khảo, THCS. giới thiệu nội dung đề thi và lời giải chi tiết đề thi tuyển sinh vào lớp 10 hệ THPT năm học 2019 – 2020 môn Toán sở GD&ĐT Lâm Đồng, kỳ thi được diễn ra vào ngày …/06/2019. Trích dẫn đề tuyển sinh lớp 10 THPT năm 2019 – 2020 môn Toán sở GD&ĐT Lâm Đồng : + Trong lễ phát động phong trào trồng cây nhân dịp kỷ niệm ngày sinh Bác Hồ, lớp 9A được giao trồng 360 cây. Khi thực hiện có 4 bạn được điều đi làm việc khác, nên mỗi học sinh còn lại phải trồng thêm một cây so với dự định. Hỏi lớp 9A có bao nhiêu học sinh? (Biết số cây trồng của mỗi học sinh như nhau). [ads] + Từ điểm A nằm ngoài đường tròn (O), vẽ tiếp tuyến AB (B là tiếp điểm) và cát tuyến ACD không đi qua tâm O (C nằm giữa A và D). Gọi E là trung điểm của CD. Chứng minh rằng ABOE là tứ giác nội tiếp. + Cho △ABC nhọn nội tiếp đường tròn (O). Các đường cao AD, BE, CF cắt nhau tại H (D thuộc BC, E thuộc AC, F thuộc AB). Tia FE cắt đường tròn tại M. Chứng minh AM^2 = AH.AD.