Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi chọn học sinh giỏi tỉnh Toán 9 năm 2017 - 2018 sở GDĐT Thanh Hóa

Ngày 10 tháng 03 năm 2018, sở Giáo dục và Đào tạo tỉnh Thanh Hóa tổ chức kỳ thi chọn học sinh giỏi cấp tỉnh môn Toán lớp 9 khối THCS năm học 2017 – 2018, kỳ thi nhằm tuyển chọn những em học sinh lớp 9 có khả năng học tập môn Toán xuất sắc để tuyên dương và khen thưởng, làm mục tiêu phấn đấu cho học sinh tỉnh nhà, các em được chọn sẽ được tiếp tục bồi dưỡng để tham dự kỳ thi HSG Toán 9 cấp Quốc gia. Đề thi chọn học sinh giỏi tỉnh Toán 9 năm 2017 – 2018 sở GD&ĐT Thanh Hóa với 05 bài toán dạng tự luận, thang điểm bài thi là 20 điểm, thời gian làm bài thi 150 phút, đề thi gồm có 01 trang, có hướng dẫn giải và biểu điểm. Trích dẫn đề thi chọn học sinh giỏi tỉnh Toán 9 năm 2017 – 2018 sở GD&ĐT Thanh Hóa : + Cho a, b là các số nguyên dương thỏa mãn p = a^2 + b^2 là số nguyên tố và p – 5 chia hết cho 8. Giả sử x, y là các số nguyên thỏa mãn ax^2 – by^2 chia hết cho p. Chứng minh rằng cả hai số x, y chia hết cho p. + Biết phương trình (m – 2)x^2 – 2(m – 1)x + m = 0 có hai nghiệm tương ứng là độ dài hai cạnh góc vuông của một tam giác vuông. Tìm m để độ dài đường cao ứng với cạnh huyền của tam giác vuông đó bằng 2/√5. + Cho tam giác ABC có (O), (I), (Ia) theo thứ tự là các đường tròn ngoại tiếp, đường tròn nội tiếp và đường tròn bàng tiếp đối diện đỉnh A của tam giác với các tâm tương ứng là O, I, Ia. Gọi D là tiếp điểm của (I) với BC, P là điểm chính giữa cung BAC của (O), PIa cắt (O) tại điểm K. Gọi M là giao điểm của PO và BC, N là điểm đối xứng với P qua O. 1. Chứng minh IBIaC là tứ giác nội tiếp. 2. Chứng minh NIa là tiếp tuyến của đường tròn ngoại tiếp tam giác IaMP. 3. Chứng minh DAI = KAIa.

Nguồn: toanmath.com

Đọc Sách

Đề HSG lớp 9 môn Toán vòng 2 năm 2023 2024 phòng GD ĐT thành phố Hải Dương
Nội dung Đề HSG lớp 9 môn Toán vòng 2 năm 2023 2024 phòng GD ĐT thành phố Hải Dương Bản PDF - Nội dung bài viết Đề HSG Toán lớp 9 vòng 2 năm 2023 - 2024 phòng GD&ĐT thành phố Hải Dương Đề HSG Toán lớp 9 vòng 2 năm 2023 - 2024 phòng GD&ĐT thành phố Hải Dương Chào mừng đến với Đề thi chọn học sinh giỏi môn Toán lớp 9 vòng 2 năm học 2023 - 2024 của Phòng Giáo dục và Đào tạo thành phố Hải Dương, tỉnh Hải Dương! Đề thi này sẽ là cơ hội thách thức và phát triển kiến thức của các em học sinh lớp 9. Trích dẫn một số câu hỏi thú vị trong Đề thi: Cho đa thức \( A = 12x^2 - 3y^2 + 8xy + 2x + y \) biết rằng với \( x = a \) và \( y = b \) thì \( A = 0 \). Chứng minh rằng \( 6a + b + 1 \) là bình phương của một số nguyên. Cho tam giác ABC vuông tại A, đường cao AH. Gọi E, F lần lượt là hình chiếu của H trên AB và AC. Gọi M là giao điểm của BF và CE. Chứng minh rằng \( AB \times CF = AC \times AE \). Cho tam giác ABC, điểm D trên cạnh BC sao cho \( DC = 4 \times BD \). Điểm M thay đổi trên đoạn thẳng AD, BM cắt AC tại E, CM cắt AB tại F. Xác định vị trí điểm M trên AD để diện tích tam giác DEF đạt giá trị lớn nhất. Hy vọng rằng các em sẽ tự tin và thành công trong việc giải quyết các bài toán thú vị và phức tạp trong Đề thi này. Chúc các em học tốt và đạt kết quả cao!
Đề chọn đội tuyển HSG lớp 9 môn Toán vòng 2 năm 2023 2024 trường THCS Cầu Giấy Hà Nội
Nội dung Đề chọn đội tuyển HSG lớp 9 môn Toán vòng 2 năm 2023 2024 trường THCS Cầu Giấy Hà Nội Bản PDF - Nội dung bài viết Đề chọn đội tuyển HSG Toán lớp 9 vòng 2 năm 2023-2024 trường THCS Cầu Giấy Hà Nội Đề chọn đội tuyển HSG Toán lớp 9 vòng 2 năm 2023-2024 trường THCS Cầu Giấy Hà Nội Chào các thầy cô giáo và các bạn học sinh lớp 9. CLB Văn Hóa Toán trường THCS Cầu Giấy sẽ tổ chức đề chọn đội tuyển học sinh giỏi môn Toán lớp 9 vòng 2 trong năm học 2023-2024. Kỳ thi sẽ diễn ra vào ngày thứ Năm, ngày 21 tháng 09 năm 2023. Dưới đây là một số câu hỏi mẫu trong đề thi: - Cho các số thực không âm a, b, c thỏa mãn a + b + c = 4. Hãy tìm giá trị lớn nhất của biểu thức P = 3a + ab + abc. - Cho hình vuông ABCD, gọi O là giao điểm của hai đường chéo. E là điểm bất kì thuộc đoạn OB, trên tia đối của tia EC lấy điểm F sao cho OF = OC. Chứng minh rằng FE là phân giác của góc BFD và kẻ ET vuông góc với FD tại T. Chứng minh rằng FO, AH và ST đồng quy. - Xét tập T = {1; 2; 3; ...; 10}. Hãy chỉ ra một tập con U có 4 phần tử của T thỏa mãn với mọi x, y thuộc U, x khác y thì x + y không chia hết cho x - y.
Đề học sinh giỏi lớp 9 môn Toán năm 2023 2024 phòng GD ĐT Phú Xuyên Hà Nội (Vòng 1)
Nội dung Đề học sinh giỏi lớp 9 môn Toán năm 2023 2024 phòng GD ĐT Phú Xuyên Hà Nội (Vòng 1) Bản PDF - Nội dung bài viết Đề thi học sinh giỏi Toán lớp 9 năm 2023 - 2024 Phòng GD&ĐT Phú Xuyên Hà Nội (Vòng 1) Đề thi học sinh giỏi Toán lớp 9 năm 2023 - 2024 Phòng GD&ĐT Phú Xuyên Hà Nội (Vòng 1) Sytu xin gửi đến quý thầy cô và các em học sinh lớp 9 đề thi chọn học sinh giỏi cấp huyện môn Toán năm học 2023 - 2024 tại phòng Giáo dục và Đào tạo UBND huyện Phú Xuyên, thành phố Hà Nội (Vòng 1). Trích dẫn các câu hỏi trong đề thi: Giải bất phương trình: x² - 9x + 14 < 0. Chứng minh rằng với mọi số nguyên n thì n³ + 3n² + 2018n chia hết cho 6. Cho hình bình hành ABCD có đường chéo AC lớn hơn đường chéo BD. Gọi E, F lần lượt là hình chiếu của B và D xuống đường thẳng AC. Tứ giác BEDF là hình gì, vì sao? Chứng minh rằng: a) CHK đồng dạng BCA. b) AB.AH + AD.AK = AC². Cho tam giác ABC nhọn, các đường cao AK, BD, CE cắt nhau tại H. Giả sử HK = AK/3. Chứng minh rằng tanB.tanC = 3. Đây là một đề thi thách thức và đa dạng, giúp các em học sinh lớp 9 rèn luyện khả năng suy luận, tư duy logic và phát triển khả năng giải quyết vấn đề. Hy vọng các em sẽ vượt qua thử thách này một cách xuất sắc và tự tin.
Đề học sinh giỏi Toán THCS năm 2023 2024 phòng GD ĐT Đông Hà Quảng Trị
Nội dung Đề học sinh giỏi Toán THCS năm 2023 2024 phòng GD ĐT Đông Hà Quảng Trị Bản PDF - Nội dung bài viết Đề học sinh giỏi Toán THCS năm 2023 - 2024 Đề học sinh giỏi Toán THCS năm 2023 - 2024 Xin chào quý thầy cô và các em học sinh lớp 9! Hôm nay, Sytu xin giới thiệu đến các bạn đề thi chọn học sinh giỏi văn hóa cấp THCS môn Toán năm học 2023 - 2024 do phòng Giáo dục và Đào tạo thành phố Đông Hà, tỉnh Quảng Trị tổ chức. Đề thi bao gồm các câu hỏi thú vị và đa dạng, nhằm khuyến khích sự sáng tạo và tư duy logic của các em. Dưới đây là một số câu hỏi từ đề thi: Câu 1: Cho hình bình hành ABCD. Gọi E, F lần lượt là hình chiếu của B, D lên đường chéo AC và G, H lần lượt là hình chiếu của A, C lên đường chéo BD. Biết rằng 4 điểm E, F, G, H tạo thành một tứ giác. Chứng minh tứ giác đó cũng là một hình bình hành. Câu 2: Cho tam giác ABC vuông tại C có CB = 3CA. Gọi D, E là các điểm trên cạnh BC sao cho CD = DE = EB. Chứng minh rằng ADC + AEC + ABC = 90°. Câu 3: Các số nguyên dương được chia vào các tập hợp S1, S2, S3, S4... như sau: S = {1}, S2 = {2;3}, S3 = {4;5;6}, S4 = {7;8;9;10} và cứ thế tiếp tục. Hỏi phần tử nhỏ nhất và phần tử lớn nhất của tập S2023 là bao nhiêu? Đề thi này sẽ giúp các em rèn luyện kỹ năng giải quyết vấn đề, tư duy logic và nâng cao kiến thức Toán của mình. Chúc các em thành công trong kỳ thi sắp tới!