Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề KSCL giữa HK1 Toán 12 năm 2018 - 2019 trường THPT chuyên Đại học Vinh - Nghệ An

Đề KSCL giữa HK1 Toán 12 năm 2018 – 2019 trường THPT chuyên Đại học Vinh – Nghệ An mã đề 132 được biên soạn nhằm giúp nhà trường và giáo viên đánh giá khả năng của từng học sinh để có phương pháp dạy học phù hợp, đề gồm 5 trang với 50 câu hỏi và bài toán trắc nghiệm khách quan, học sinh có 90 phút để hoàn thành đề thi này. Trích dẫn đề KSCL giữa HK1 Toán 12 năm 2018 – 2019 trường THPT chuyên Đại học Vinh – Nghệ An : + Sinh nhật của An vào ngày 1 tháng 5, Bạn An muốn mua một chiếc máy ảnh giá khoảng 600.000 đồng để làm quà sinh nhật cho chính mình. Bạn ấy quyết định bỏ ống tiết kiệm 10 000 đồng vào ngày 1 tháng 1 của năm đó, sau đó cứ liên tục những ngày sau, mỗi ngày bạn bỏ ống tiết kiện 5 000 đồng. Biết trong năm đó, tháng 1 có 31 ngày, tháng 2 có 28 ngày, tháng 3 có 31 ngày và tháng 4 có 30 ngày. Gọi a (đồng) là số tiền An có được đến sinh nhật của mình (ngày sinh nhật An không bỏ tiền vào ống). Khi đó ta có? [ads] + Trong năm học 2018-2019, Trường THPT Chuyên Đại học Vinh có 13 lớp học sinh khối 10, 12 lớp học sinh khối 11 và 12 lớp học sinh khối 12. Nhân ngày nhà giáo Việt Nam 20 tháng 11 nhà trường chọn ngẫu nhiên 2 lớp trong trường để tham gia hội diễn văn nghệ của Trường Đại học Vinh. Xác suất để 2 lớp được chọn không cùng một khối là? + Một vật chuyển động theo quy luật s = -1/2.t^3 + 9t^2, với t (giây) là khoảng thời gian tính từ lúc vật bắt đầu chuyển động và s (mét) là quãng đường vật đi được trong thời gian đó. Hỏi trong khoảng thời gian 10 giây, kể từ lúc bắt đầu chuyển động, vận tốc lớn nhất của vật đạt được bằng bao nhiêu ?

Nguồn: toanmath.com

Đọc Sách

Đề KSCL tốt nghiệp THPT 2020 lần 1 Toán 12 trường THPT Tô Hiến Thành - Thanh Hóa
Ngày … tháng 05 năm 2020, trường THPT Tô Hiến Thành, tỉnh Thanh Hóa tổ chức kỳ thi khảo sát chất lượng tốt nghiệp THPT môn Toán 12 năm học 2019 – 2020 lần thứ nhất. Đề KSCL tốt nghiệp THPT 2020 lần 1 Toán 12 trường THPT Tô Hiến Thành – Thanh Hóa có mã đề 121, đề được biên soạn bám sát cấu trúc đề minh họa THPT 2020 môn Toán lần 2 của Bộ Giáo dục và Đào tạo, đề thi có đáp án và lời giải chi tiết. Trích dẫn đề KSCL tốt nghiệp THPT 2020 lần 1 Toán 12 trường THPT Tô Hiến Thành – Thanh Hóa : + Trên một chiếc đài Radio FM có vạch chia để người dùng có thể dò sóng cần tìm. Vạch ngoài cùng bên trái và vạch ngoài cùng bên phải tương ứng với 88Mhz và 108Mhz. Hai vạch này cách nhau 10cm. Biết vị trí của vạch cách vạch ngoài cùng bên trái d (cm) thì có tần số bằng k.a^d Mhz với k và a là hai hằng số. Tìm vị trí tốt nhất của vạch để bắt sóng VOV1 với tần số 102,7 Mhz. A. Cách vạch ngoài cùng bên phải 1,98cm. B. Cách vạch ngoài cùng bên phải 2,46cm. C. Cách vạch ngoài cùng bên trái 7,35cm. D. Cách vạch ngoài cùng bên trái 8,23cm. [ads] + Cho hệ phương trình log3 (x + y) = m và log2 (x^2 + y^2) = 2m, trong đó m là tham số thực. Hỏi có bao nhiêu giá trị của m để hệ phương trình đã cho có đúng hai nghiệm nguyên? + Cho đồ thị hai hàm số f(x) = (2x + 1)/(x + 1) và g(x) = (ax + 1)/(x + 2) với a ≠ 1/2. Tìm các giá trị thực dương của a để các tiệm cận của hai đồ thị hàm số tạo thành một hình chữ nhật có diện tích là 4.
Đề KSCL Toán 12 lần 2 năm 2019 - 2020 trường chuyên Quang Trung - Bình Phước
Nằm trong kế hoạch ôn tập hướng đến kỳ thi THPT Quốc gia 2020 môn Toán, ngày … tháng … năm 2020, trường THPT chuyên Quang Trung, tỉnh Bình Phước tổ chức kỳ thi khảo sát chất lượng môn Toán 12 năm học 2019 – 2020 lần thứ hai. Đề KSCL Toán 12 lần 2 năm 2019 – 2020 trường chuyên Quang Trung – Bình Phước có mã đề 003, đề gồm 08 trang với 50 câu trắc nghiệm, học sinh làm bài trong 90 phút, đề thi có đáp án và lời giải chi tiết. Trích dẫn đề KSCL Toán 12 lần 2 năm 2019 – 2020 trường chuyên Quang Trung – Bình Phước : + Xét các số nguyên dương a, b sao cho phương trình a(lnx)^2 + blnx + 5 = 0 có hai nghiệm phân biệt x1, x2 và phương trình 5(logx)^2 + blogx + a = 0 có hai nghiệm phân biệt x3, x4 sao cho x1x2 > x3x4. Tìm giá trị nhỏ nhất của S = 2a + 3b. + Cho hàm số y = f(x) có đạo hàm liên tục trên và có đồ thị y = f(x) như hình vẽ. Đặt g(x) = f(x – m) – 1/2.(x – m – 1)^2 + 2019 với m là tham số thực. Gọi S là tập hợp các giá trị nguyên dương của m để hàm số y = g(x) đồng biến trên khoảng (5;6). Tổng tất cả các phần tử trong S bằng? [ads] + Cho hình chóp S.ABCD đáy là hình vuông cạnh a, SA vuông góc với mặt phẳng (ABCD), SA = a. M và K tương ứng là trọng tâm tam giác SAB và SCD; N là trung điểm BC. Thể tích khối tứ diện SMNK bằng m/n.a^3 với m, n thuộc N và (m;n) = 1. Giá trị m + n bằng? + Cho hàm số y = f(x) xác định trên R\{1}, liên tục trên mỗi khoảng xác định và có bảng biến thiên như hình vẽ. Tìm tập hợp tất cả các giá trị của tham số thực m sao cho phương trình f(x) = 2m – 4 có đúng 3 nghiệm thực phân biệt. + Hình đa diện nào dưới đây không có tâm đối xứng: Tứ diện đều; Hình lập phương; Hình bát diện đều; Hình trụ. A.Tứ diện đều. B. Lập phương. C. Bát diện đều. D. Hình trụ.
Đề KSCL lần 1 Toán 12 năm 2019 - 2020 trường THPT Tĩnh Gia 4 - Thanh Hoá
giới thiệu đến quý thầy, cô giáo và các em học sinh đề KSCL lần 1 Toán 12 năm 2019 – 2020 trường THPT Tĩnh Gia 4 – Thanh Hoá, nhằm giúp các em ôn tập trong thời điểm nghỉ học do ảnh hưởng của dịch bệnh. Trích dẫn đề KSCL lần 1 Toán 12 năm 2019 – 2020 trường THPT Tĩnh Gia 4 – Thanh Hoá : + Một người vay 100 triệu đồng, trả góp theo tháng trong vòng 36 tháng, lãi suất là 0,75% mỗi tháng. Số tiền người đó phải trả hàng tháng (trả tiền vào cuối tháng, số tiền làm tròn đến hàng nghìn) là? A. 3180000. B. 75000000. C. 3179000. D. 8099000. + Bạn A có một cốc thủy tinh hình trụ, đường kính trong lòng đáy cốc là 6cm, chiều cao trong lòng cốc là 10cm đang đựng một lượng nước. Bạn A nghiêng cốc nước, vừa lúc khi nước chạm miệng cốc thì ở đáy mực nước trùng với đường kính đáy. Tính thể tích lượng nước trong cốc. + Cho ba số a, b, c dương và khác 1 thỏa mãn logb √c = x^2 + 1, loga^2 √b^3 = log3√c a = x. Cho biểu thức Q = 24x^2 – 2x – 1997. Chọn khẳng định đúng nhất trong các khẳng định sau?
Đề KSCL Toán 12 lần 1 năm 2019 - 2020 trường Đặng Thai Mai - Thanh Hóa
Trong thời gian chờ đợi Bộ Giáo dục và Đào tạo công bố đề minh họa THPT Quốc gia môn Toán năm học 2019 – 2020, tiếp tục chia sẻ đến quý thầy, cô giáo và các em học sinh khối 12 đề khảo sát chất lượng môn Toán lớp 12 lần thứ nhất năm học 2019 – 2020 trường THPT Đặng Thai Mai, tỉnh Thanh Hóa. Trích dẫn đề KSCL Toán 12 lần 1 năm 2019 – 2020 trường Đặng Thai Mai – Thanh Hóa : + Từ một miếng bìa cứng có hình tam giác đều cạnh a người ta gấp theo các đường đứt đoạn như trong hình vẽ dưới đây để được một hình tứ diện đều. Thể tích của khối tứ diện tương ứng với hình tứ diện đó bằng? + Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh bằng a. Cạnh bên SA = a và vuông góc với mặt phẳng đáy. Gọi M, N, P, Q lần lượt là trung điểm các cạnh SA, SB, SC, SD. Thể tích của khối chóp cụt MNPQ.ABCD bằng? [ads] + Từ một tấm bìa hình vuông ABCD có cạnh bằng 30cm người ta gấp theo các đoạn MN và PQ sao cho AD và BC trùng nhau để tạo thành một hình lăng trụ bị khuyết hai đáy như hình minh họa dưới đây? + Giá trị của tham số m thuộc khoảng nào dưới đây để đồ thị hàm số y = x^3 – 3x^2 – 9x + m cắt trục hoành tại ba điểm phân biệt có hoành độ lập thành cấp số cộng? + Cho tứ diện OABC có OA, OB và OC đôi một vuông góc (minh họa như hình vẽ bên). Biết OA = OB = OC = a, khoảng cách từ điểm O đến mặt phẳng (ABC) bằng?