Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi học kì 2 Toán 10 năm 2019 - 2020 trường THPT Phan Đình Phùng - Hà Nội

Thứ Tư ngày 17 tháng 06 năm 2020, trường THPT Phan Đình Phùng, quận Ba Đình, thành phố Hà Nội tổ chức kì thi kiểm tra chất lượng môn Toán lớp 10 giai đoạn cuối học kì 2 năm học 2019 – 2020. Đề thi học kì 2 Toán 10 năm 2019 – 2020 trường THPT Phan Đình Phùng – Hà Nội gồm 04 mã đề: 652, 653, 654, 655; đề được biên soạn theo dạng trắc nghiệm kết hợp với tự luận, trong đó phần trắc nghiệm gồm 12 câu, chiếm 03 điểm, phần tự luận gồm 04 câu, chiếm 07 điểm, thời gian làm bài 90 phút, đề thi có đáp án và lời giải chi tiết. Trích dẫn đề thi học kì 2 Toán 10 năm 2019 – 2020 trường THPT Phan Đình Phùng – Hà Nội : + Trong mặt phẳng tọa độ Oxy, cho tam giác ABC có G là trọng tâm và tọa độ các đỉnh A(−1;1), B(1;7), C(3;-2). a) Viết phương trình đường tròn tâm G và tiếp xúc với cạnh AC. b) Tính góc giữa hai đường thẳng AB và AC. c) Cho điểm M(m;n) thay đổi thỏa mãn MG = 2 và số thực p thay đổi.Tìm giá trị nhỏ nhất của biểu thức E = √((m – p)^2 + (n + 1)^2). [ads] + Thống kê điểm thi của 30 em học sinh đứng đầu kì thi học sinh giỏi Toán (thang điểm là 20 ), kết quả được cho trong bảng sau đây. Mốt của bảng phân bố đã cho là? + Trong mặt phẳng tọa độ Oxy, cho điểm A(1;2), B(−2;3), C(−2;1). Điểm M(a;b) thuộc Oy sao cho: |MA + MB + MC| nhỏ nhất, khẳng định nào sau đây đúng?

Nguồn: toanmath.com

Đọc Sách

Đề học kỳ 2 Toán 10 năm 2022 - 2023 trường THPT Đức Trọng - Lâm Đồng
giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 10 đề kiểm tra cuối học kỳ 2 môn Toán 10 năm học 2022 – 2023 trường THPT Đức Trọng, tỉnh Lâm Đồng; đề thi có đáp án và thang điểm. Trích dẫn Đề học kỳ 2 Toán 10 năm 2022 – 2023 trường THPT Đức Trọng – Lâm Đồng : + Một tổ có 10 người gồm 6 nam và 4 nữ. Cần lập một đoàn đại biểu gồm 5 người trong đó có ba nam, hai nữ? Gieo ngẫu nhiên một đồng tiền cân đối và đồng chất hai lần, tính xác suất của biến cố A :”mặt sấp xuất hiện ít nhất một lần”. + Viết phương trình các cạnh của tam giác ABC biết A(1;3) và hai trung tuyến có phương trình là x y 2 10 và y 1 0. + Tổ 1 có ba học sinh là Công, Bình, An. Giáo viên chọn ngẫu nhiên một bạn trong tổ để kiểm tra vở bài tập. Không gian mẫu là: A. {An}. B. {Bình}. C. {Công, Bình, An}. D. {Công}.
Đề học kỳ 2 Toán 10 năm 2022 - 2023 trường chuyên Vị Thanh - Hậu Giang
giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 10 đề kiểm tra cuối học kỳ 2 môn Toán 10 năm học 2022 – 2023 trường THPT chuyên Vị Thanh, tỉnh Hậu Giang; đề thi có đáp án và hướng dẫn chấm điểm. Trích dẫn Đề học kỳ 2 Toán 10 năm 2022 – 2023 trường chuyên Vị Thanh – Hậu Giang : + Giả sử một công việc có thể thực hiện theo một trong hai phương án khác nhau. Phương án một có m1 cách thực hiện; phương án hai có m2 cách thực hiện (không trùng với bất kì cách thực hiện nào của phương án một). Khi đó số cách thực hiện công việc sẽ là? + Một nhóm học sinh gồm 15 nam và 5 nữ. Người ta muốn chọn từ nhóm ra 5 người để lập thành một đội cờ đỏ sao cho phải có 1 đội trưởng nam, 1 đội phó nam và có ít nhất 1 nữ. Hỏi có bao nhiêu cách lập đội cờ đỏ? + Các thành phố A, B, C được nối với nhau bởi các con đường như hình vẽ. Hỏi có bao nhiêu cách đi từ thành phố A đến thành phố C mà qua thành phố B chỉ một lần?
Đề học kỳ 2 Toán 10 năm 2022 - 2023 trường THPT Việt Âu - TP HCM
giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 10 đề kiểm tra cuối học kỳ 2 môn Toán 10 năm học 2022 – 2023 trường THPT Việt Âu, thành phố Hồ Chí Minh; đề thi có đáp án và thang điểm. Trích dẫn Đề học kỳ 2 Toán 10 năm 2022 – 2023 trường THPT Việt Âu – TP HCM : + Một hộp chứa 6 viên bi trắng và 5 viên bi xanh, 9 viên bi đỏ. Lấy 5 viên bi từ hộp, có bao nhiêu cách lấy 5 viên bi sao cho: a) Lấy 5 viên bất kỳ. b) Có 2 viên bi trắng, 2 viên bi xanh và 1 viên bi đỏ. + Gieo 1 con xúc xắc cân đối và đồng chất hai lần. Tính xác suất của các biến cố sau: a. Tổng số chấm của 2 lần gieo bằng 11. b.Tổng số chấm 2 lần gieo chia hết cho 5. + Trong mặt phẳng Oxy cho tam giác ABC có ABC 34 21 12. a. Lập phương trình đường tròn (C) ngoại tiếp ∆ABC. b. Viết phương trình tiếp tuyến của (C) tại A. c. Viết phương trình tiếp tuyến của 2 1 10 x y kẻ từ điểm M (4;3).
Đề cuối kỳ 2 Toán 10 năm 2022 - 2023 trường THPT Phan Bội Châu - Bình Thuận
giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 10 đề kiểm tra cuối học kỳ 2 môn Toán 10 năm học 2022 – 2023 trường THPT Phan Bội Châu, tỉnh Bình Thuận; đề thi hình thức 70% trắc nghiệm + 30% tự luận, thời gian làm bài 90 phút (không kể thời gian phát đề); đề thi có đáp án trắc nghiệm và hướng dẫn giải tự luận mã đề 802 – 588 – 751 – 261. Trích dẫn Đề cuối kỳ 2 Toán 10 năm 2022 – 2023 trường THPT Phan Bội Châu – Bình Thuận : + Một cửa hàng đang có 30 bông hoa khác nhau. Trong đó có 5 bông hoa mẫu đơn, 10 bông hoa lan và 15 bông hoa hồng. Một khách hàng vào cửa tiệm lấy ngẫu nhiên 5 bông hoa và yêu cầu gói giúp một bó hoa. Tính xác suất sao cho trong 5 bông hoa lấy ra có đủ cả ba loại hoa trên (mẫu đơn, hoa lan và hoa hồng) và số hoa hồng không ít hơn 2? + Trên bờ biển có hai trạm thu phát tín hiệu A và B cách nhau 20 km, người ta xây một cảng biển cho tàu hàng neo đậu là một nửa hình elip nhận AB làm trục lớn và có tiêu cự bằng 16 km. Một con tàu hàng M nhận tín hiệu đi vào cảng biển sao cho hiệu khoảng cách từ nó đến A và B luôn là 16 km (tham khảo hình vẽ). Khi neo đậu tại cảng thì khoảng cách từ con tàu đến bờ biển là bao nhiêu? (Kết quả làm tròn hai chữ số thập phân). + Phát biểu nào sau đây là đúng? A. Biến cố có khả năng xảy ra càng thấp thì xác suất của nó càng gần 1. B. Biến cố có khả năng xảy ra cao hơn sẽ có xác suất nhỏ hơn biến cố có khả năng xảy ra thấp hơn. C. Biến cố có khả năng xảy ra càng cao thì xác suất của nó càng gần 0. D. Xác suất của biến cố chắc chắc bằng 1.