Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Chuyên đề phương trình bậc nhất hai ẩn

Nội dung Chuyên đề phương trình bậc nhất hai ẩn Bản PDF Đầu tiên, "Chuyên đề phương trình bậc nhất hai ẩn" là một tài liệu học tập quan trọng với 19 trang, được biên soạn bởi tác giả Toán Học Sơ Đồ. Tài liệu này tổng hợp kiến thức quan trọng và cung cấp hướng dẫn chi tiết về cách giải các dạng bài tập tự luận và trắc nghiệm trong chuyên đề phương trình bậc nhất hai ẩn.

Trước hết, tài liệu bao gồm các kiến thức cơ bản như phương trình bậc nhất hai ẩn và tập nghiệm của chúng. Sau đó, tài liệu tập trung vào các dạng bài tập minh họa, bao gồm các dạng như xác định nghiệm của phương trình bậc nhất hai ẩn, biện luận và vẽ đồ thị của hàm số bậc nhất, cũng như tìm nghiệm nguyên của phương trình.

Ngoài ra, tài liệu cũng cung cấp các bài tập trắc nghiệm rèn luyện và tự luyện để học sinh có thể ôn tập và kiểm tra kiến thức của mình. Tài liệu này hỗ trợ học sinh trong quá trình học tập chương trình Đại số 9, đặc biệt trong chương 3 với bài số 1 về phương trình bậc nhất hai ẩn.

Tóm lại, "Chuyên đề phương trình bậc nhất hai ẩn" là một tài liệu hữu ích, cung cấp kiến thức chi tiết và hướng dẫn cụ thể giúp học sinh nắm vững và áp dụng phương trình bậc nhất hai ẩn trong bài tập và bài kiểm tra.

Nguồn: sytu.vn

Đọc Sách

Phương trình bậc hai, hệ thức Vi-ét và ứng dụng - Dương Minh Hùng
Tài liệu gồm 26 trang, được biên soạn bởi thầy giáo Dương Minh Hùng, phân dạng và hướng dẫn giải các dạng toán về chủ đề phương trình bậc hai, hệ thức Vi-ét và ứng dụng, giúp học sinh lớp 9 tham khảo khi học chương trình Toán 9 và ôn thi vào lớp 10 môn Toán. A. Tóm tắt lý thuyết 1. Công thức nghiệm. 2. Công thức nghiệm thu gọn. 3. Định lí Vi-ét. 4. Ứng dụng Vi-ét (nhẫm nghiệm đặc biệt của phương trình bậc hai). 5. Các ứng dụng vào giải toán chứa tham số. B. Phân dạng toán cơ bản Dạng 1. Giải phương trình quy về bậc nhất. Dạng 2. Giải phương trình bậc hai. Dạng 3. Tính giá trị biểu thức nghiệm dùng Vi-ét. Dạng 4. Toán tham số m với ứng dụng định lý Vi-ét. C. Bài tập rèn luyện
Các phép toán về căn thức - Dương Minh Hùng
Tài liệu gồm 19 trang, được biên soạn bởi thầy giáo Dương Minh Hùng, phân dạng và hướng dẫn giải các dạng toán về chủ đề căn thức, giúp học sinh lớp 9 tham khảo khi học chương trình Toán 9 và ôn thi vào lớp 10 môn Toán. A. Tóm tắt lý thuyết 1. Căn bậc hai số học. 2. Liên hệ giữa phép nhân với phép khai phương. 3. Liên hệ giữa phép chia với phép khai phương. 4. Biến đổi đơn giản biểu thức chứa căn thức bậc hai. B. Phân dạng toán cơ bản Dạng 1. Tìm điều kiện để biểu thức có chứa căn thức có nghĩa. Dạng 2. Tính giá trị biểu thức chứa căn. Dạng 3. Rút gọn biểu thức chứa căn. Dạng 4. Rút gọn và tính giá trị biểu thức chứa căn. C. Bài tập rèn luyện
Phương pháp giải các dạng toán căn bậc hai, căn bậc ba
Tài liệu gồm 54 trang, tóm tắt kiến thức trọng tâm và hướng dẫn phương pháp giải các dạng toán căn bậc hai, căn bậc ba, giúp học sinh lớp 9 tham khảo khi học chương trình Toán 9 phần Đại số chương 1. Bài 1 . Căn bậc hai. Bài 2 . Căn thức bậc hai và hằng đẳng thức √A^2 = |A|. + Dạng 1. Tìm căn bậc hai số học của một số. + Dạng 2. So sánh các căn bậc hai số học. + Dạng 3. Giải phương trình, bất phương trình. + Dạng 4. Tìm điều kiện để √A có nghĩa. + Dạng 5. Rút gọn biểu thức dạng √A^2. Bài 3 . Liên hệ giữa phép nhân và phép khai phương. + Dạng 1. Khai phương một tích. + Dạng 2. Nhân các căn bậc hai. + Dạng 3. Rút gọn, tính giá trị của biểu thức. + Dạng 4. Biến đổi một biểu thức về dạng tích. + Dạng 5. Giải phương trình. + Dạng 6. Chứng minh bất đẳng thức. Bài 4 . Liên hệ giữa phép chia và phép khai phương. + Dạng 1. Khai phương một thương. + Dạng 2. Chia các căn bậc hai. + Dạng 3. Rút gọn, tính giá trị của biểu thức. + Dạng 4. Giải phương trình. Bài 5 . Bảng căn bậc hai. Bài 6 – Bài 7 . Biến đổi đơn giản biểu thức chứa căn thức bậc hai. + Dạng 1. Đưa thừa số ra ngoài dấu căn. + Dạng 2. Đưa thừa số vào trong dấu căn. + Dạng 3. Khử mẫu của biểu thức lấy căn. + Dạng 4. Trục căn thức ở mẫu. + Dạng 5. So sánh hai số. + Dạng 6. Rút gọn biểu thức. Bài 8 . Rút gọn biểu thức chứa căn thức bậc hai. + Dạng 1. Rút gọn biểu thức chỉ có cộng, trừ căn thức. + Dạng 2. Rút gọn biểu thức có chứa các phép cộng, trừ, nhân, chia căn thức dưới dạng phân thức đại số. + Dạng 3. Rút gọn rồi tính giá trị của biểu thức hoặc rút gọn rồi tìm giá trị của biểu thức để biểu thức có một giá trị nào đó. + Dạng 4. Rút gọn biểu thức rồi chứng minh biểu thức có một tính chất nào đó hoặc tìm giá trị nhỏ nhất, giá trị lớn nhất của một biểu thức. + Dạng 5. Chứng minh đẳng thức. Bài 9 . Căn bậc ba. + Dạng 1. Tìm căn bậc ba của một số. + Dạng 2. So sánh. + Dạng 3. Thực hiện các phép tính. + Dạng 4. Giải phương trình.
Phương pháp giải các dạng toán hàm số bậc nhất
Tài liệu gồm 58 trang, tóm tắt kiến thức trọng tâm và hướng dẫn phương pháp giải các dạng toán hàm số bậc nhất, giúp học sinh lớp 9 tham khảo khi học chương trình Toán 9 phần Đại số chương 2. Bài 1 . Nhắc lại và bổ sung các khái niệm về hàm số. Bài 2 . Hàm số bậc nhất. + Dạng 1. Tìm tập xác định (TXĐ) của hàm số. + Dạng 2. Tính giá trị của hàm số khi biết giá trị của biến số. Tính giá trị của biến số khi biết giá trị của hàm số. + Dạng 3. Biểu diễn điểm trên mặt phẳng tọa độ. Xác định khoảng cách giữa hai điểm trên mặt phẳng. + Dạng 4. Điểm thuộc đồ thị. Điểm không thuộc đồ thị của hàm số. + Dạng 5. Xác định hàm số bậc nhất. + Dạng 6. Xác định tính đồng biến, nghịch biến của hàm số. Bài 3 . Đồ thị của hàm số y = ax + b (a khác 0). + Dạng 1. Điểm thuộc đường thẳng. Điểm không thuộc đường thẳng. + Dạng 2. Xác định đường thẳng. + Dạng 3. Vẽ đồ thị của hàm số y = ax + b (a khác 0). Bài 4 . Đường thẳng song song và đường thẳng cắt nhau. + Dạng 1. Nhận dạng cặp đường thẳng song song với nhau, cặp đường thẳng cắt nhau, cặp đường thẳng vuông góc với nhau. + Dạng 2. Xác định đường thẳng với quan hệ song song. + Dạng 3. Xác định đường thẳng với quan hệ vuông góc. Bài 5 . Hệ số góc của đường thẳng y = ax + b (a khác 0). + Dạng 1. Xác định hệ số góc của đường thẳng. + Dạng 2. Xác định góc. + Dạng 3. Xác định đường thẳng. Ôn tập chương II. + Dạng 1. Vẽ đồ thị của hàm số bậc nhất. + Dạng 2. Xác định đường thẳng. + Dạng 3. Cực trị.