Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Chuyên đề dấu hiệu nhận biết tiếp tuyến của đường tròn

Nội dung Chuyên đề dấu hiệu nhận biết tiếp tuyến của đường tròn Bản PDF - Nội dung bài viết Chuyên đề dấu hiệu nhận biết tiếp tuyến của đường trònTóm tắt lý thuyếtBài tập và các dạng toánTrắc nghiệm rèn phản xạ Chuyên đề dấu hiệu nhận biết tiếp tuyến của đường tròn Tài liệu này bao gồm 28 trang và được biên soạn bởi tác giả Toán Học Sơ Đồ. Nó tổng hợp kiến thức trọng tâm, phân dạng và hướng dẫn giải các dạng bài tập tự luận và trắc nghiệm về chuyên đề dấu hiệu nhận biết tiếp tuyến của đường tròn. Hỗ trợ học sinh trong quá trình học tập chương trình Hình học 9 chương 2 bài số 5. Tóm tắt lý thuyết Dấu hiệu 1: Nếu một đường thẳng đi qua một điểm của đường tròn và vuông góc với bán kính đi qua điểm đó thì đường thẳng đó là một tiếp tuyến của đường tròn. Dấu hiệu 2: Theo định nghĩa tiếp tuyến. Bài tập và các dạng toán Dạng 1: Chứng minh một đường thẳng là tiếp tuyến của một đường tròn. Phương pháp giải có thể làm theo các cách như chứng minh điểm tiếp xúc nằm trên đường tròn và vuông góc với đường thẳng, hoặc kẻ đoạn vuông góc từ tâm đến điểm tiếp xúc và chứng minh bằng tính chất vuông góc. Dạng 2: Tính độ dài. Sử dụng định lý và công thức lượng trong tam giác vuông để tính độ dài các đoạn thẳng. Dạng 3: Bài toán tổng hợp. Trắc nghiệm rèn phản xạ Sau khi học lý thuyết và làm bài tập, học sinh có thể rèn luyện kỹ năng phản xạ qua việc làm các câu hỏi trắc nghiệm để kiểm tra hiểu biết và áp dụng kiến thức.

Nguồn: sytu.vn

Đọc Sách

Tài liệu lớp 9 môn Toán chủ đề góc có đỉnh bên trong đường tròn, bên ngoài đường tròn
Nội dung Tài liệu lớp 9 môn Toán chủ đề góc có đỉnh bên trong đường tròn, bên ngoài đường tròn Bản PDF - Nội dung bài viết Tài liệu lớp 9 môn Toán chủ đề góc có đỉnh bên trong đường tròn, bên ngoài đường tròn Tài liệu lớp 9 môn Toán chủ đề góc có đỉnh bên trong đường tròn, bên ngoài đường tròn Thông qua tài liệu này, học sinh sẽ được học về kiến thức cơ bản về góc có đỉnh bên trong đường tròn và góc có đỉnh bên ngoài đường tròn trong môn Toán lớp 9. A. Lý thuyết: 1. Góc có đỉnh bên trong đường tròn: Góc BIC nằm bên trong đường tròn (O) được gọi là góc có đỉnh bên trong đường tròn. Định lí 1: Số đo của góc có đỉnh bên trong đường tròn bằng nửa tổng số đo hai cung bị chắn. 2. Góc có đỉnh bên ngoài đường tròn: Các góc có đỉnh nằm bên ngoài đường tròn, các cạnh đều có điểm chung với đường được gọi là góc có đỉnh ở bên ngoài đường tròn. Định lí 2: Số đo của góc có đỉnh ở bên ngoài đường tròn bằng nửa hiệu số đo hai cung bị chắn. B. Bài tập: Dạng 1: Chứng minh hai góc bằng nhau, hai đoạn thẳng bằng nhau. Cách giải: Sử dụng hai định lí về số đo của góc có đỉnh bên trong đường tròn, góc có đỉnh bên ngoài đường tròn. Dạng 2: Chứng minh hai đường thẳng song song hoặc vuông góc. Chứng minh đẳng thức cho trước. Cách giải: Áp dụng hai định lí về số đo góc có đỉnh bên trong đường tròn, góc có đỉnh bên ngoài đường tròn để có được các góc bằng nhau, cạnh bằng nhau. Tài liệu này cung cấp đầy đủ đáp án và lời giải chi tiết cho các bài tập, giúp học sinh hiểu rõ hơn về chủ đề góc có đỉnh bên trong đường tròn, bên ngoài đường tròn.
Tài liệu lớp 9 môn Toán chủ đề góc nội tiếp
Nội dung Tài liệu lớp 9 môn Toán chủ đề góc nội tiếp Bản PDF - Nội dung bài viết Tài liệu Tạo Góc Nội Tiếp Lớp 9 Môn ToánLý Thuyết Về Góc Nội TiếpBài Tập Thực Hành Tài liệu Tạo Góc Nội Tiếp Lớp 9 Môn Toán Chào mừng các bạn học sinh lớp 9 đến với tài liệu chuyên đề về góc nội tiếp trong môn Toán. Tài liệu này bao gồm 09 trang, cung cấp kiến thức cần nhớ, các dạng toán và bài tập về chủ đề góc nội tiếp trong chương trình môn Toán lớp 9. Mỗi bài tập đều có đáp án và lời giải chi tiết để giúp các bạn tự học và ôn tập hiệu quả. Lý Thuyết Về Góc Nội Tiếp 1. Định nghĩa: Góc nội tiếp là góc có đỉnh nằm trên đường tròn và hai cạnh chứa hai dây cung của đường tròn. Cung nằm bên trong góc nội tiếp được gọi là cung bị chắn. 2. Định lý: Trong một đường tròn, số đo của góc nội tiếp bằng nửa số đo của cung bị chắn. 3. Hệ quả: a) Các góc nội tiếp bằng nhau chắn các cung bằng nhau và ngược lại. b) Các góc nội tiếp cùng chắn một cung hoặc chắn các cung bằng nhau thì bằng nhau. c) Góc nội tiếp (nhỏ hơn hoặc bằng 90 độ) có số đo bằng nửa số đo của góc ở tâm cùng chắn một cung. d) Góc nội tiếp chắn nửa đường tròn là góc vuông. Bài Tập Thực Hành Để làm quen với kiến thức về góc nội tiếp, chúng ta sẽ thực hành qua các dạng bài tập sau: Dạng 1: Chứng minh các góc bằng nhau, các đoạn thẳng bằng nhau bằng cách áp dụng hệ quả trong phần lý thuyết. Dạng 2: Chứng minh hai đường thẳng vuông góc, ba điểm thẳng hàng bằng cách sử dụng kiến thức về góc nội tiếp. Nhằm giúp các bạn hiểu rõ hơn về chủ đề này, tài liệu này đã được biên soạn cẩn thận và chi tiết. Chúc các bạn học tốt và thành công trên con đường học tập!
Tài liệu lớp 9 môn Toán chủ đề góc ở tâm và số đo cung
Nội dung Tài liệu lớp 9 môn Toán chủ đề góc ở tâm và số đo cung Bản PDF - Nội dung bài viết Tài liệu lớp 9 môn Toán chủ đề góc ở tâm và số đo cung Tài liệu lớp 9 môn Toán chủ đề góc ở tâm và số đo cung Tài liệu này bao gồm 09 trang với kiến thức cần nhớ, các dạng toán và bài tập liên quan đến chủ đề góc ở tâm và số đo cung trong chương trình môn Toán lớp 9. Mỗi bài tập đều có đáp án và lời giải chi tiết. Trong phần lý thuyết, bạn sẽ được học về góc ở tâm, số đo cung và cách so sánh hai cung. Bạn sẽ tìm hiểu khi nào thì tổng số đo của hai cung bằng số đo của cung lớn. Trong phần bài tập, có hai dạng toán chính. Dạng 1 là tính số đo của góc ở tâm và cung bị chắn. Bạn sẽ được hướng dẫn cách tính các số đo này và sử dụng tỉ số lượng giác để giải bài toán. Dạng 2 là chứng minh hai cung bằng nhau, thông qua việc chứng minh cùng một số đo. Tài liệu cung cấp file WORD để quý thầy cô tham khảo và sử dụng trong việc giảng dạy. Đảm bảo rằng bạn sẽ hiểu rõ và áp dụng được kiến thức trong phần góc ở tâm và số đo cung sau khi sử dụng tài liệu này.
Tài liệu lớp 9 môn Toán chủ đề góc tạo bởi tia tiếp tuyến và dây cung
Nội dung Tài liệu lớp 9 môn Toán chủ đề góc tạo bởi tia tiếp tuyến và dây cung Bản PDF Bộ tài liệu lớp 9 môn Toán với chủ đề góc tạo bởi tia tiếp tuyến và dây cung là một nguồn tư liệu quý giá giúp học sinh hiểu rõ hơn về các kiến thức và bài tập liên quan đến chủ đề này.Lý thuyết trong tài liệu bao gồm định nghĩa của góc tạo bởi tia tiếp tuyến và dây cung, định lý về số đo của góc này, hệ quả khi góc tạo bởi tia tiếp tuyến và dây cung cùng chắn một cung, và định lý bổ sung khi góc có số đo bằng nửa số đo của cung. Những kiến thức này được trình bày một cách cụ thể và dễ hiểu, giúp học sinh nắm vững và áp dụng vào việc giải các bài tập.Bài tập trong tài liệu được phân loại thành các dạng khác nhau như chứng minh đẳng thức, các góc bằng nhau, chứng minh hai đường thẳng song song hay vuông góc, và tia tiếp tuyến của đường tròn. Cách giải chi tiết, hướng dẫn rõ ràng sẽ giúp học sinh nắm chắc cách làm và tự tin khi giải bài tập.Ngoài ra, tài liệu còn cung cấp file Word cho giáo viên để dễ dàng sử dụng trong việc giảng dạy và tổ chức bài kiểm tra. Tất cả những điều này giúp tài liệu trở thành một công cụ hữu ích, giúp học sinh đạt được thành công trong việc học tập môn Toán.