Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Chuyên đề nguyên hàm, tích phân và ứng dụng - Bùi Đình Thông

Tài liệu gồm 149 trang, được biên soạn bởi thầy giáo Bùi Đình Thông, tóm tắt lý thuyết, phân dạng và tuyển chọn bài tập chuyên đề nguyên hàm, tích phân và ứng dụng, hỗ trợ học sinh khối 12 trong quá trình học chương trình Giải tích 12 chương 3 và ôn thi tốt nghiệp THPT môn Toán. BÀI 1 : NGUYÊN HÀM. Chuyên đề 1 : NGUYÊN HÀM CƠ BẢN – NGUYÊN HÀM MỞ RỘNG – VI PHÂN. ➢ Dạng 1: Các bài toán sử dụng định nghĩa, tính chất nguyên hàm và bảng nguyên hàm sơ cấp. + Bài toán 1: Tìm nguyên hàm của hàm số bằng bảng nguyên hàm. + Bài toán 2: Chứng minh F(x) là một nguyên hàm của f(x). + Bài toán 3: Xác định nguyên hàm với điều kiện ràng buộc. + Bài toán 4: Tìm giá trị của tham số để F(x) là một nguyên hàm của f(x). ➢ Dạng 2: Tìm nguyên hàm bằng công thức mở rộng. + Bài toán 1: Tìm nguyên hàm của hàm đa thức. + Bài toán 2: Tìm nguyên hàm của hàm phân thức. + Bài toán 3: Tìm nguyên hàm của hàm mũ. + Bài toán 4: Tìm nguyên hàm của hàm lượng giác. Chuyên đề 2 : CÁC PHƯƠNG PHÁP TÌM NGUYÊN HÀM. ➢ Dạng 1: Tìm nguyên hàm bằng phương pháp đổi biến số. ➢ Dạng 2: Tìm nguyên hàm bằng phương pháp nguyên hàm từng phần. BÀI 2 : TÍCH PHÂN. Chuyên đề 1 : TÍCH PHÂN CƠ BẢN. ➢ Dạng 1: Sử dụng công thức nguyên hàm cơ bản, nguyên hàm mở rộng và phương pháp vi phân. ➢ Dạng 2: Tích phân hàm phân thức đại số đặc biệt. Chuyên đề 2 : TÍNH TÍCH PHÂN BẰNG PHƯƠNG PHÁP ĐỔI BIẾN SỐ. ➢ Dạng 1: Phương pháp đổi biến số dạng 1. ➢ Dạng 2: Phương pháp đổi biến số dạng 2. ➢ Dạng 3: Phương pháp đổi biến số dạng 3. Chuyên đề 3 : TÍNH TÍCH PHÂN BẰNG PHƯƠNG PHÁP TỪNG PHẦN. ➢ Dạng 1: P(x) là hàm đa thức, Q(x) không phải là hàm logarit. ➢ Dạng 2: P(x) là hàm logarit, Q(x) là hàm bất kì. Chuyên đề 4 : TÍNH TÍCH PHÂN HÀM ẨN. ➢ Dạng 1: Tích phân sử dụng phương pháp đổi biến số. ➢ Dạng 2: Tích phân sử dụng phương pháp tích phân từng phần. ➢ Dạng 3: Tích phân sử dụng tính chẵn lẻ. ➢ Dạng 4. Tích phân chứa biểu thức dạng f'(x) + p(x).f(x) = h(x). BÀI 3 : ỨNG DỤNG TÍCH PHÂN. Chuyên đề 1 : TÍNH DIỆN TÍCH HÌNH PHẲNG. ➢ Dạng 1: Diện tích hình phẳng (H) giới hạn bởi đồ thị hàm số y = f(x), trục Ox (y = 0) và các đường thẳng x = a, x = b. ➢ Dạng 2: Diện tích hình phẳng (H) giới hạn bởi các đồ thị hàm số y = f(x), y = g(x) và các đường thẳng x = a, x = b. Chuyên đề 2 : TÍNH THỂ TÍCH VẬT THỂ TRÒN XOAY. ➢ Dạng 1: Thể tích của vật thể: Một vật thể V được giới hạn bởi hai mặt phẳng vuông góc với trục hoành tại hai điểm có hoành độ x = a, x = b (a =< b). Gọi S(x) là diện tích thiết diện của V, vuông góc với trục Ox tại x thuộc [a;b]. ➢ Dạng 2: Thể tích khối tròn xoay: Cho hình phẳng giới hạn bởi đồ thị của f(x) liên tục trên đoạn [a;b], trục Ox và hai đường thẳng x = a, x = b quay quanh Ox, ta được khối tròn xoay. ➢ Dạng 3: Thể tích khối tròn xoay: Cho hình phẳng giới hạn bởi đồ thị của f(x), g(x) liên tục trên đoạn [a;b] và hai đường thẳng x = a, x = b quay quanh Ox, ta được khối tròn xoay (V). Chuyên đề 3 : BÀI TOÁN THỰC TẾ – ĐỒ THỊ ĐẶC BIỆT. ➢ Dạng 1: Bài toán chuyển động. ➢ Dạng 2: Bài toán liên quan đến các yếu tố vật lý.

Nguồn: toanmath.com

Đọc Sách

Kĩ thuật chọn hàm trong các bài toán tích phân từ NB - TH đến VD - VDC
Tài liệu gồm 17 trang, được biên soạn bởi các tác giả: Minh Chung và Dương Đình Tuấn, trình bày kĩ thuật chọn hàm trong các bài toán tích phân từ nhận biết – thông hiểu đến vận dụng – vận dụng cao; đây là một kĩ thuật giải nhanh trắc nghiệm rất hay, giúp đưa một bài toán tích phân khó về một bài toán chọn hàm đơn giản, rút ngắn được thời gian giải toán; giúp học sinh học tốt chương trình Giải tích 12 chương 3: nguyên hàm, tích phân và ứng dụng và ôn thi THPT Quốc gia môn Toán. Dạng toán 1. Hàm hằng. Dạng toán 2. Hàm bậc nhất. Dạng toán 3. Hàm bậc hai. Dạng toán 4. Hàm chẵn. + Dạng 4.1. Hàm chẵn một giả thiết. + Dạng 4.2. Hàm chẵn hai giả thiết. Dạng toán 5. Hàm lẻ. + Dạng 5.1. Hàm lẻ một giả thiết. + Dạng 5.2. Hàm lẻ hai giả thiết. [ads] Dạng toán 6. Hàm tuần hoàn với chu kì T một giả thiết Dạng toán 7. Hàm tuần hoàn với chu kì T và là hàm lẻ một giả thiết. Dạng toán 8. Hàm tuần hoàn với chu kì T và là hàm chẵn một giả thiết. Dạng toán 9. Hàm tuần hoàn với chu kì T và là hàm lẻ một giả thiết. Dạng toán 10. Với bài toán có giả thiết như sau: $f(x) = f(a + b – x)$, $\int_b^a f (x)dx = c.$ Dạng toán 11. Với bài toán có giả thiết như sau: $f(x).f(a + b – x) = g(x) > 0.$ Dạng toán 12. Với bài toán có giả thiết như sau: $\int_a^b {(f(} x){)^2}dx = \alpha $, $\int_a^b f (x).g(x)dx = \beta .$ Phụ lục: Một số thủ thuật giải nhanh các dạng toán tích phân. Xem thêm : Bài toán logarit qua nhiều góc nhìn (Tài liệu cùng tác giả).
700 câu vận dụng cao nguyên hàm - tích phân và ứng dụng ôn thi THPT môn Toán
Tài liệu gồm 90 trang, được sưu tầm và tổng hợp bởi Tư Duy Mở Trắc Nghiệm Toán Lý, tuyển chọn 700 câu vận dụng cao (VDC) nguyên hàm – tích phân và ứng dụng có đáp án, giúp học sinh ôn thi THPT môn Toán. Trích dẫn tài liệu 700 câu vận dụng cao nguyên hàm – tích phân và ứng dụng ôn thi THPT môn Toán: + Một ô-tô bắt đầu chuyển động nhanh dần đều với vận tốc v1(t) = 7t (m/s). Đi được 5 (s), người lái xe phát hiện chướng ngại vật và phanh gấp, ô-tô tiếp tục chuyển động chậm dần đều với gia tốc a = −70 (m/s2). Tính quãng đường S (m) đi được của ô-tô từ lúc bắt đầu chuyển bánh cho đến khi dừng hẳn? + Cho hình (H) là hình phẳng giới hạn bởi đường cong x = y2 và đường thẳng x = a với a > 0. Gọi V1 và V2 lần lượt là thể tích của vật thể trong xoay được sinh ra khi quay hình (H) quanh trục hoành và trục tung. Kí hiệu ∆V là giá trị lớn nhất của V1 − V2/8 đạt được khi a = a0 > 0. Hệ thức nào sau đây đúng? [ads] + Cho hàm số f(x) = ax3 + bx2 + cx + d (a khác 0) thỏa mãn (f(0) − f(2)) (f(3) − f(2)) > 0. Mệnh đề nào dưới đây đúng? A Phương trình f(x) = 0 luôn có nghiệm duy nhất. B Hàm số f(x) có hai cực trị. C Hàm số f(x) không có cực trị. D Phương trình f(x) = 0 luôn có 3 nghiệm phân biệt.
Một số thủ thuật tính tích phân
Tài liệu gồm 34 trang, được biên soạn bởi quý thầy, cô giáo kênh PPT – TV, hướng dẫn một số thủ thuật giải bài toán tích phân vận dụng – vận dụng cao (VD – VDC), giúp học sinh tìm hiểu chuyên sâu chương trình Giải tích 12 chương 3 (nguyên hàm, tích phân và ứng dụng) và ôn thi tốt nghiệp THPT môn Toán; các bài toán được chọn lọc trong các đề thi thử THPT môn Toán. I. Các phương pháp thường sử dụng. + Phương pháp tự luận. + Phương pháp Casio. + Phương pháp chọn hàm đại diện. II. Bài tập. III. Đáp án & lời giải chi tiết.
Tổng ôn tập TN THPT 2020 môn Toán Ứng dụng của tích phân
Tài liệu gồm 45 trang, được tổng hợp và biên soạn bởi thầy giáo Nguyễn Bảo Vương, tuyển chọn các câu hỏi và bài tập trắc nghiệm chuyên đề ứng dụng của tích phân; có đáp án và lời giải chi tiết, giúp học sinh tổng ôn kiến thức để chuẩn bị cho kỳ thi tốt nghiệp THPT 2020 môn Toán. Khái quát nội dung tài liệu tổng ôn tập TN THPT 2020 môn Toán: Ứng dụng của tích phân: Vấn đề 1. Ứng dụng tích phân tính diện tích hình phẳng. Vấn đề 2. Ứng dụng tích phân tính thể tích. Vấn đề 3. Ứng dụng tích phân vào bài toán chuyển động.