Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Bài toán cực trị hình học trong không gian - Quách Đăng Thăng

Tài liệu gồm 20 trang hướng dẫn phương pháp giải bài toán cực trị hình học không gian thông qua các ví dụ có lời giải chi tiết. Tài liệu sáng kiến kinh nghiệm của thầy Quách Đăng Thăng trình bày phương pháp về các bài toán cực trị hình học trong không gian như: Tìm điểm, tìm độ dài để thể tích đa diện, độ dài đoạn thẳng đạt lớn nhất, nhỏ nhất. Thực tế giảng dạy cho thấy môn Toán học trong trường phổ thông là một trong những môn học khó, phần lớn các em học môn Toán rất yếu đặc biệt là hình học không gian, nếu không có những bài giảng và phương pháp dạy môn Hình học phù hợp đối với thế hệ học sinh thì dễ làm cho học sinh thụ động trong việc tiếp thu, cảm nhận. Đã có hiện tượng một số bộ phận học sinh không muốn học Hình học, ngày càng xa rời với giá trị thực tiễn của Hình học. Nhiều giáo viên chưa quan tâm đúng mức đối tượng giáo dục, chưa đặt ra cho mình nhiệm vụ và trách nhiệm nghiên cứu, hiện tượng dùng đồng loạt cùng một cách dạy, một bài giảng cho nhiều lớp, nhiều thế hệ học trò vẫn còn nhiều. Do đó phương pháp ít có tiến bộ mà người giáo viên đã trở thành người cảm nhận, truyền thụ tri thức một chiều, còn học sinh không chủ động trong quá trình lĩnh hội tri thức – kiến thức Hình học làm cho học sinh không thích học môn Hình học. [ads] Tuy nhiên với việc đại số hóa hình học thì các bài toán hình học không gian trở lên đơn giản và dễ nhìn hơn. Gần đây trong các đề thi Đại học hàng năm đã bắt đầu xuất hiện các bài toán cực trị hình học trong không gian mà đôi khi việc giải các bài toán này một cách trực tiếp bằng kiến thức hình học không gian thuần tuy là vô cùng khó khăn. Chính vì lý do đó tôi chọn đề tài Bài toán cực trị hình học trong không gian. Trong phạm vi bài viết này, với mong muốn giúp các e có thêm một tài liệu ôn thi Đại học – Cao đẳng và đồng thời để các e hiểu được rằng bài toán cực trị nói chung và bài toán cực trị trong hình học không gian không phải là quá khó không thể giải quyết được. Đối tượng áp dụng chủ yếu cho tài liệu này về cơ bản là trên lớp 12A2, ngoài ra tôi cũng đan xen trong các tiết học của các lớp 12A6 và 12A8. Đối tượng nghiên cứu là các tài liệu sách giáo khoa Hình học 12, sách bài tập Hình học 12 cơ bản và nâng cao, các bài giảng trên mạng Internet, các tài liệu và forum trên các diễn đàn Toán học trên mạng Internet cùng một số tài liệu tham khảo khác.

Nguồn: toanmath.com

Đọc Sách

Chuyên đề hình học không gian dành cho học sinh trung bình - yếu
Kỳ thi THPT Quốc Gia 2016 – 2017 đã cận kề, từ nhu cầu thực tế ôn luyện của các học sinh trung bình và yếu, các thầy cô giáo ở khắp mọi miền trong cả nước đã biên soạn bộ tài liệu ÔN TẬP KỲ THI THPTQG dành cho đối tượng học sinh trung bình. Chuyên đề HÌNH HỌC KHÔNG GIAN được nhóm 04 thầy cô: Lê Văn Định, Dương Phước Sang, Phùng Hoàng Em, Trần Thị Thu Thảo biên soạn nội dung. Hỗ trợ hình học thầy Lê Quang Hòa. Chuyên đề bao gồm 04 nội dung chính: + Phần 1: Đa diện – Thể tích khối đa diện + Phần 2: Mặt nón – Khối nón + Phần 3: Mặt cầu – Khối cầu + Phần 4: Mặt trụ – Khối trụ [ads] Với nội dung các câu hỏi thuộc các mức độ nhận biết và thông hiểu, nhằm giúp học sinh quen với các hình không gian cơ bản nhớ được công thức tính diện tích thể tích và các yếu tố liên quan đến các hình. Với nội dung các câu hỏi thuộc các mức độ nhận biết và thông hiểu, nhằm giúp học sinh quen với các hình không gian cơ bản nhớ được công thức tính diện tích thể tích và các yếu tố liên quan đến các hình.
Một số công thức giải nhanh phần thể tích khối chóp - Nguyễn Chiến
Tài liệu gồm 12 trang tuyển tập các công thức tính nhanh thể tích của các khối chóp thường gặp và bài tập ví dụ minh họa có giải chi tiết. Tài liệu trình bày công thức tính thể tích các dạng hình chóp sau: + Hình chóp SABC với các mặt phẳng (SAB), (SBC), (SAC) vuông góc với nhau từng đôi một, diện tích các tam giác SAB, SBC, SAC lần lượt là S1, S2, S3 + Hình chóp S.ABC có SA vuông góc với (ABC), hai mặt phẳng (SAB) và (SBC) vuông góc với nhau, góc BSC = α, góc ASB = β + Hình chóp đều S.ABC có đáy ABC là tam giác đều cạnh bằng a, cạnh bên bằng b + Hình chóp tam giác đều S.ABC có cạnh đáy bằng a và mặt bên tạo với mặt phẳng đáy góc + Hình chóp tam giác đều S.ABC có các cạnh bên bằng b và cạnh bên tạo với mặt phẳng đáy góc β + Hình chóp tam giác đều S.ABC có các cạnh đáy bằng a, cạnh bên tạo với mặt phẳng đáy góc β [ads] + Hình chóp tứ giác đều S.ABCD có đáy ABCD là hình vuông cạnh bằng a, và SA = SB = SC = SD = b + Hình chóp tứ giác đều S.ABCD có cạnh đáy bằng a, góc tạo bởi mặt bên và mặt phẳng đáy là α + Hình chóp tứ giác đều S.ABCD có cạnh đáy bằng a, (SAB) = α, với α ∈ (π/4; π/2) + Hình chóp tứ giác đều S.ABCD có các cạnh bên bằng a, góc tạo bởi mặt bên và mặt đáy là α với α ∈ (0; π/2) + Hình chóp tam giác đều S.ABC có cạnh đáy bằng a. Gọi (P) là mặt phẳng đi qua A song song với BC và vuông góc với (SBC), góc giữa (P) với mặt phẳng đáy là α + Khối tám mặt đều có đỉnh là tâm các mặt của hình lập phương cạnh a + Khối tám mặt đều cạnh a. Nối tâm của các mặt bên ta được khối lập phương Bài tập minh họa áp dụng công thức Một số công thức giải nhanh phần tỉ lệ thể tích
Bài toán cực trị hình học không gian và các khối lồng nhau - Trần Đình Cư
Tài liệu gồm 31 trang hướng dẫn phương pháp giải dạng toán cực trị hình học không gian và các khối lồng nhau kèm theo bài tập minh họa có lời giải chi tiết. Trong quá trình tìm kiếm lời giải nhiều bài toán hình học, sẽ rất có lợi nếu chúng ta xem xét các phần tử biên, phần tử giới hạn nào đó, tức là phần tử mà tại đó mỗi đại lượng hình học có thể nhận giá trị lớn nhất hoặc giá trị nhỏ nhất, chẳng hạn như cạnh lớn nhất, cạnh nhỏ nhất của một tam giác; góc lớn nhất hoặc góc nhỏ nhất của một đa giác … Những tính chất của các phần tử biên, phần tử giới hạn nhiều khi giúp chúng ta tìm được lời giải thu gọn của bài toán. Phương pháp tiếp cận như vậy tới lời giải bài toán được gọi là nguyên tắc cực hạn. Như vậy bài toán cực trị hình học là cần thiết trong không gian, nó thường xuất hiện ở những câu hỏi khó trong phần thi trắc nghiệm THPT Quốc gia. [ads] Tóm tắt nội dung tài liệu : 1. Phương pháp Cơ sở của phương pháp cần kết hợp giữa các quan điểm tìm cực trị như sau 1. Sử dụng bất đẳng thức thông dụng 2. Bất đẳng thức cauchy cho các biến đại lượng không âm. 3. Bất đẳng thức schwartz cho các biến đại lượng tùy ý. 4. Sử dụng tính bị chặn của hàm lượng giác 5. Sử dụng đạo hàm để lập bảng biến thiên 6. Sử dụng các nguyên lý hình học cực hạn Một số ví dụ mẫu Câu hỏi và bài tập trắc nghiệm có đáp án và lời giải chi tiết
Các dạng toán về góc trong hình học không gian - Trần Đình Cư
Tài liệu gồm 23 trang trình bày các dạng toán về góc, phương pháp giải và bài tập trắc nghiệm có đáp án và lời giải chi tiết. 3 dạng toán về góc trong hình học không gian gồm: + Dạng 1. Góc giữa hai mặt phẳng + Dạng 2. Góc giữa hai đường thẳng + Dạng 3. Góc giữa đường thẳng và mặt phẳng [ads] Trích dẫn tài liệu : + Cho hình chóp S.ABCD có đáy ABCD là hình thang vuông tại AD, với AB = 3a, AD = 2a, DC = a. Hình chiếu vuông góc của S xuống mặt phẳng (ABCD) là H thuộc AB với AH = 2HB. Biết SH = 2a, cosin của góc giữa SB và AC là? + Cho hình hộp ABCD.A’B’C’D’ có đáy ABCD là hình thoi cạnh a, góc A = 60 độ. Chân đường vuông góc hạ từ B’ xuống mặt phẳng (ABCD) trùng với giao điểm của hai đường chéo của đáy ABCD. Cho BB’ = a.Tính góc giữa cạnh bên và đáy. + Cho hình chóp S.ABCD có đáy ABCD là hình thang vuông tại A và D, CD = 2a, AD = AB = a. Hình chiếu vuông góc của S trên mặt đáy là trung điểm H của đoạn AB. Khoảng cách từ điểm H đến mặt phẳng (SCD) bằng a√2/3. Tan của góc giữa đường thẳng BC và mặt phẳng (SCD) bằng? + Cho hình chóp S.ABC có đáy là tam giác vuông cân tại B có AB = BC = a; SA ⊥ (ABC). Biết mặt phẳng (SBC) tạo với đáy một góc 60 độ. Cosin góc tạo bởi đường thẳng SC và mặt phẳng (ABC) là? + Cho khối chóp S.ABC có đáy là tam giác cân tại A có AB = AC = 4a, góc BAC = 120 độ. Gọi M là trung điểm của BC, N là trung điểm của AB, ΔSAM là tam giác cân tại S và thuộc mặt phẳng vuông góc với đáy. Biết SA = a√2. Góc giữa SN và mặt phẳng (ABC) là?