Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề kiểm tra KSCĐ lần 1 lớp 10 môn Toán năm 2023 2024 trường THPT Xuân Hòa Vĩnh Phúc

Nội dung Đề kiểm tra KSCĐ lần 1 lớp 10 môn Toán năm 2023 2024 trường THPT Xuân Hòa Vĩnh Phúc Bản PDF Sytu giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 10 đề kiểm tra khảo sát chuyên đề lần 1 môn Toán lớp 10 năm học 2023 – 2024 trường THPT Xuân Hòa, tỉnh Vĩnh Phúc; đề thi mã đề 103, gồm 05 trang với 50 câu trắc nghiệm, thời gian làm bài 90 phút. Trích dẫn Đề kiểm tra KSCĐ lần 1 Toán lớp 10 năm 2023 – 2024 trường THPT Xuân Hòa – Vĩnh Phúc : + Sử dụng khái niệm “điều kiện cần” để phát biểu định lí sau: “Nếu hai tam giác bằng nhau thì chúng có diện tích bằng nhau”. Hãy chọn phát biểu đúng? A. Hai hình có diện tích bằng nhau là điều kiện cần để hai tam giác bằng nhau. B. Hai tam giác bằng nhau là điều kiện cần và đủ để chúng có diện tích bằng nhau. C. Hai tam giác có diện tích bằng nhau là điều kiện cần để hai tam giác bằng nhau. D. Hai tam giác bằng nhau là điều kiện cần để chúng có diện tích bằng nhau. + Lớp 10A có 45 học sinh trong đó có 25 em học giỏi môn Toán, 23 em học giỏi môn Lý, 20 em học giỏi môn Hóa, 11 em học giỏi cả môn Toán và môn Lý, 8 em học giỏi cả môn Lý và môn Hóa, 9 em học giỏi cả môn Toán và môn Hóa. Hỏi lớp 10A có bao nhiêu bạn học giỏi cả ba môn Toán, Lý, Hóa, biết rằng mỗi học sinh trong lớp học giỏi ít nhất một trong 3 môn Toán, Lý, Hóa? + Một công ty TNHH trong một đợt quảng cáo và bán khuyến mãi hàng hóa (1 sản phẩm mới của công ty) cần thuê xe để chở trên 140 người và trên 9 tấn hàng. Nơi thuê chỉ có hai loại xe A và B . Trong đó xe loại A có 10 chiếc, xe loại B có 9 chiếc. Một chiếc xe loại A cho thuê với giá 4 triệu, loại B giá 3 triệu. Hỏi phải thuê bao nhiêu xe mỗi loại để chi phí vận chuyển là thấp nhất. Biết rằng xe A chỉ chở tối đa 20 người và 0,6 tấn hàng. Xe B chở tối đa 10 người và 1,5 tấn hàng. File WORD (dành cho quý thầy, cô):

Nguồn: sytu.vn

Đọc Sách

Đề thi chọn HSG lớp 10 môn Toán cấp trường năm 2017 2018 trường Lý Thái Tổ Bắc Ninh
Nội dung Đề thi chọn HSG lớp 10 môn Toán cấp trường năm 2017 2018 trường Lý Thái Tổ Bắc Ninh Bản PDF - Nội dung bài viết Đề thi chọn HSG Toán lớp 10 trường Lý Thái Tổ Bắc Ninh Đề thi chọn HSG Toán lớp 10 trường Lý Thái Tổ Bắc Ninh Đề thi chọn HSG Toán lớp 10 cấp trường năm 2017 - 2018 trường Lý Thái Tổ - Bắc Ninh được tổ chức vào ngày 14 tháng 04 năm 2018. Đề thi bao gồm 1 trang với 5 bài toán tự luận, thời gian làm bài 120 phút. Mỗi bài toán sẽ giúp học sinh thể hiện kiến thức và kỹ năng giải toán của mình từ các chủ đề khác nhau. Trong bài toán đầu tiên, học sinh sẽ cần tìm tọa độ các đỉnh của hình vuông ABCD khi biết các thông tin như trung điểm cạnh AB, trung điểm đoạn CI và điều kiện của đỉnh D. Hướng giải sẽ là qua việc tìm tọa độ các đỉnh để giải phương trình và điều kiện đề bài cho ra kết quả cuối cùng. Bài toán thứ hai đề cập đến Parabol và đường thẳng cắt nhau tạo thành hai điểm phân biệt A và B theo điều kiện AB = 10. Học sinh cần phải giải phương trình giữa Parabol và đường thẳng để tìm ra giá trị của m để thỏa mãn điều kiện đề bài. Trong bài toán cuối cùng, học sinh sẽ cần tính diện tích tam giác ABC khi biết các thông tin về tam giác, góc, hai đường trung tuyến vuông góc và độ dài một cạnh. Hướng giải sẽ là sử dụng các công thức trong hình học để tính toán diện tích tam giác theo yêu cầu đề bài. Với nhiều bài toán đa dạng về nội dung và đòi hỏi khả năng suy luận logic, đề thi chọn HSG Toán lớp 10 trường Lý Thái Tổ Bắc Ninh sẽ giúp học sinh rèn luyện kỹ năng giải toán, tư duy logic và khám phá sự sáng tạo trong học tập.
Đề thi chọn HSG cấp trường lớp 10 môn Toán năm 2017 2018 trường THPT Con Cuông Nghệ An
Nội dung Đề thi chọn HSG cấp trường lớp 10 môn Toán năm 2017 2018 trường THPT Con Cuông Nghệ An Bản PDF - Nội dung bài viết Đề thi chọn HSG cấp trường lớp 10 môn Toán năm 2017 2018 trường THPT Con Cuông Nghệ An Đề thi chọn HSG cấp trường lớp 10 môn Toán năm 2017 2018 trường THPT Con Cuông Nghệ An Đề thi chọn HSG cấp trường Toán lớp 10 năm 2017 – 2018 trường THPT Con Cuông – Nghệ An là bài thi quan trọng dành cho các học sinh giỏi để thử sức và phát triển năng khiếu toán học của mình. Đề thi gồm 1 trang với 5 bài toán tự luận, thời gian làm bài 150 phút (không kể thời gian phát đề), và đề thi đi kèm lời giải chi tiết. Trích dẫn đề thi chọn HSG cấp trường Toán lớp 10 năm 2017 – 2018: 1. Cho tam giác ABC. Gọi D, E lần lượt là các điểm thỏa mãn vtBD = 2/3.vtBC, vtAE = 1/4.vtAC. Điểm K trên đoạn thẳng AD sao cho 3 điểm B, K, E thẳng hàng. Tìm tỉ số AD/AK. 2. Trong mặt phẳng tọa độ Oxy cho tam giác ABC vuông tại B, AB = 2BC, D là trung điểm AB, E là điểm thuộc đoạn AC sao cho AC = 3EC, có phương trình CD: x – 3y + 1 = 0, E(16/3;1). a) Chứng minh rằng BE là phân giác trong của góc B. Tìm tọa độ điểm I là giao của CD và BE. b) Tìm tọa độ các đỉnh A, B, C, biết A có tung độ âm. Bài thi này không chỉ đòi hỏi kiến thức vững chắc của học sinh mà còn đề cao khả năng suy luận logic và giải quyết vấn đề. Chắc chắn sẽ là một thách thức đáng giá đối với các em học sinh yêu thích môn Toán.
Đề thi chọn HSG tỉnh lớp 10 môn Toán THPT năm học 2017 2018 sở GD và ĐT Hà Tĩnh
Nội dung Đề thi chọn HSG tỉnh lớp 10 môn Toán THPT năm học 2017 2018 sở GD và ĐT Hà Tĩnh Bản PDF - Nội dung bài viết Đề Thi HSG Toán Lớp 10 THPT Hà Tĩnh 2017 - 2018 Đề Thi HSG Toán Lớp 10 THPT Hà Tĩnh 2017 - 2018 Đề thi chọn HSG tỉnh Toán lớp 10 THPT năm học 2017 – 2018 tại sở GD và ĐT Hà Tĩnh đưa ra những bài toán thú vị và đòi hỏi sự tư duy logic và khéo léo của học sinh. Đề bao gồm 5 bài toán tự luận, thời gian làm bài 180 phút, dành cho học sinh lớp 10 và 11 khối THPT. Một trong những bài toán trong đề thi là vấn đề về trồng đậu và cà trên diện tích 800 m2. Học sinh cần phải tính toán kỹ lưỡng để đưa ra quyết định trồng mỗi loại cây để thu được lãi cao nhất và số công không vượt quá 90. Những bài toán như vậy không chỉ giúp học sinh rèn luyện khả năng tính toán mà còn phát triển tư duy logic và quyết định của họ. Ngoài ra, đề thi còn đưa ra bài toán về tam giác ABC trong mặt phẳng với hệ tọa độ Oxy, yêu cầu tìm tọa độ đỉnh C dựa trên các điều kiện đã cho. Để giải quyết bài toán này, học sinh cần phải áp dụng kiến thức về tọa độ và tính toán độ dài đường cao của tam giác. Trong bài toán khác, học sinh cần chứng minh tam giác MBG có diện tích là một số tự nhiên trong tam giác ABC. Đây là bài toán đòi hỏi sự khéo léo trong việc áp dụng kiến thức về tam giác và tính chất của các hình học. Đề thi chọn HSG Toán lớp 10 THPT Hà Tĩnh 2017 - 2018 không chỉ là cơ hội để các học sinh thử thách khả năng mình mà còn là dịp để phát triển tư duy logic và khám phá sự hấp dẫn của môn Toán.
Đề thi chọn HSG tỉnh lớp 10 môn Toán THPT năm 2017 2018 sở GD và ĐT Hải Dương
Nội dung Đề thi chọn HSG tỉnh lớp 10 môn Toán THPT năm 2017 2018 sở GD và ĐT Hải Dương Bản PDF - Nội dung bài viết Đề thi chọn HSG tỉnh lớp 10 môn Toán THPT năm 2017-2018 sở GD và ĐT Hải Dương Đề thi chọn HSG tỉnh lớp 10 môn Toán THPT năm 2017-2018 sở GD và ĐT Hải Dương Đề thi chọn HSG tỉnh Toán lớp 10 THPT năm 2017-2018 sở GD và ĐT Hải Dương là bài kiểm tra đánh giá năng lực toán học của học sinh trung học phổ thông. Đề thi gồm 5 bài toán tự luận, thời gian làm bài là 180 phút. Nội dung đề bao gồm các chủ đề cơ bản như hàm số và đồ thị, phương trình - bất phương trình - hệ phương trình, vectơ, tích vô hướng của hai vectơ và ứng dụng, bài toán tối ưu, min - max. Trong kỳ thi, học sinh sẽ phải giải các bài toán phức tạp, đòi hỏi sự logic, kiến thức và kỹ năng tính toán chính xác. Đề thi diễn ra vào ngày 04/04/2018 và có sẵn lời giải chi tiết để học sinh tham khảo sau khi thi. Trích dẫn một số bài toán trong đề thi: Cho tam giác ABC có AB = 6, BC = 7, CA = 5. Gọi M là điểm thuộc cạnh AB sao cho AM = 2MB và N là điểm thuộc AC sao cho vtAN = k.vtAC. Tìm k sao cho đường thẳng CM vuông góc với đường thẳng BN. Trong mặt phẳng toạ độ Oxy, cho hình chữ nhật ABCD có phương trình đường thẳng AB là x - 2y + 1 = 0. Biết phương trình đường thẳng BD là x - 7y + 14 = 0 và đường thẳng AC đi qua điểm M(2,1). Tìm toạ độ các đỉnh của hình chữ nhật. Một xưởng sản xuất có hai máy, sản xuất ra hai loại sản phẩm I và II. Hỏi một ngày nên sản xuất bao nhiêu tấn mỗi loại sản phẩm để tiền lãi lớn nhất? Đề thi chọn HSG tỉnh lớp 10 môn Toán là cơ hội để học sinh thử thách và nâng cao kiến thức, kỹ năng toán học của mình. Mong rằng những bài toán này sẽ giúp học sinh phát triển khả năng giải quyết vấn đề và tư duy logic.