Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề học sinh giỏi cấp tỉnh Toán 12 năm 2023 - 2024 sở GDĐT Lâm Đồng

giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 12 đề thi chọn học sinh giỏi cấp tỉnh môn Toán 12 THPT & GDTX năm học 2023 – 2024 sở Giáo dục và Đào tạo tỉnh Lâm Đồng; kỳ thi được diễn ra vào sáng thứ Sáu ngày 26 tháng 01 năm 2024. Trích dẫn Đề học sinh giỏi cấp tỉnh Toán 12 năm 2023 – 2024 sở GD&ĐT Lâm Đồng : + Cho tập hợp A = {1; 2; 3; …; 20}. Chọn ngẫu nhiên 3 phần tử của A. Tính xác suất để 3 phần tử được chọn lập thành cấp số cộng. + Cho hình vuông H1 có cạnh bằng a (a > 0). Người ta chia mỗi cạnh hình vuông H1 thành ba phần bằng nhau và nối các điểm chia một cách thích hợp để có hình vuông H2. Từ hình vuông H2 tiếp tục làm như trên ta nhận được hình vuông H3. Lặp lại cách chia như trên ta được dãy các hình vuông H1, H2, H3, …, Hn, … (tham khảo hình vẽ ở bên). Gọi S là diện tích của hình vuông Hk (k thuộc {1; 2; 3; …; n; …}). Đặt T = S1 + S2 + S3 + … + Sn + …. Tìm a biết T = 16. + Từ một tấm tôn hình vuông có cạnh bằng 12(dm) người ta cắt bỏ các tam giác vuông cân tạo thành hình tô đậm như hình vẽ ở bên. Sau đó người ta gập lại và hàn thành hình hộp chữ nhật (H) không nắp. Tính thể tích nước tối đa mà khối hộp chữ nhật (H) có thể chứa được.

Nguồn: toanmath.com

Đọc Sách

Đề chọn đội tuyển thi HSG QG môn Toán năm 2021 - 2022 sở GDĐT Kiên Giang
giới thiệu đến quý thầy, cô giáo và các em học sinh đề thi chọn đội tuyển dự thi học sinh giỏi Quốc gia môn Toán năm học 2021 – 2022 sở Giáo dục và Đào tạo tỉnh Kiên Giang; kỳ thi được diễn ra trong hai ngày 24 và 25 tháng 11 năm 2021; đề thi có đáp án, lời giải chi tiết và hướng dẫn chấm điểm.
Đề chọn học sinh giỏi thành phố Toán 12 năm 2021 - 2022 sở GDĐT Hải Phòng
Thứ Ba ngày 18 tháng 01 năm 2022, sở Giáo dục và Đào tạo Hải Phòng tổ chức kỳ thi chọn học sinh giỏi cấp thành phố lớp 12 môn Toán năm học 2021 – 2022. Đề chọn học sinh giỏi thành phố Toán 12 năm 2021 – 2022 sở GD&ĐT Hải Phòng gồm 01 trang với 08 bài toán dạng tự luận, thời gian học sinh làm bài thi là 180 phút (không kể thời gian phát đề). Trích dẫn đề chọn học sinh giỏi thành phố Toán 12 năm 2021 – 2022 sở GD&ĐT Hải Phòng : + Có 15 người xếp thành một hàng dọc (vị trí của mỗi người trong hàng là cố định). Chọn ra 4 người trong hàng. Tính xác suất để 4 người được chọn không có hai người nào đứng cạnh nhau. + Cho hình lăng trụ đứng ABCD A B C D có đáy ABCD là hình thang cân, AD song song với BC, AB BC CD a AD a 2. Góc giữa hai mặt phẳng ACD và ABCD bằng 0 45. a) Tính khoảng cách từ B đến mặt phẳng A CD. b) Gọi P là mặt phẳng đi qua B và vuông góc với đường thẳng A C. Mặt phẳng P chia khối lăng trụ đã cho thành hai khối đa diện. Tính thể tích khối đa diện chứa đỉnh A. + Trong mặt phẳng tọa độ Oxy, cho tam giác ABC không có góc nào tù, nội tiếp đường tròn tâm I. Gọi D là chân đường phân giác trong của góc A D BC. Đường thẳng đi qua D và vuông góc với đường thẳng AI cắt đường thẳng AC tại điểm E. Tìm tọa độ các điểm A và C biết rằng A có tung độ âm và 1 5 0 1 1 0 2 B I E.
Đề lập đội tuyển thi HSG QG môn Toán năm 2021 - 2022 sở GDĐT Bình Phước
Đề lập đội tuyển thi HSG QG môn Toán năm 2021 – 2022 sở GD&ĐT Bình Phước gồm 02 trang với 07 bài toán dạng tự luận, kỳ thi được diễn ra trong hai ngày: 03/01/2022 và 04/01/2022.
Đề chọn đội tuyển thi HSG QG THPT 2022 môn Toán sở GDĐT Đồng Nai
Thứ Ba ngày 28 tháng 12 năm 2021, sở Giáo dục và Đào tạo tỉnh Đồng Nai tổ chức kỳ thi chọn đội tuyển thi học sinh giỏi Quốc gia THPT môn Toán năm học 2021 – 2022. Đề chọn đội tuyển thi HSG QG THPT 2022 môn Toán sở GD&ĐT Đồng Nai gồm 01 trang với 05 bài toán dạng tự luận, thời gian học sinh làm bài thi là 180 phút (không kể thời gian phát đề). Trích dẫn đề chọn đội tuyển thi HSG QG THPT 2022 môn Toán sở GD&ĐT Đồng Nai : + Để xác định ai sở hữu kho báu, Alibaba và bốn mươi tên cướp chơi trò chơi sau đây trên một bảng ô vuông vô hạn: họ luân phiên chơi, đầu tiên là Alibaba, sau đó là lần lượt mỗi tên cướp, rồi sau đó là Alibaba, rồi lại lần lượt các tên cướp; cứ tiếp tục như vậy. Mỗi lượt chơi, người chơi được phép tô màu một đoạn thẳng đơn vị là cạnh chung của hai ô vuông đơn vị nào đó của bảng miễn là đoạn đó chưa được tô. Alibaba được sở hữu kho báu nếu sau một lượt chơi của một người chơi nào đó, có một hình chữ nhật 1 x 2 (hoặc 2 x 1) mà toàn bộ biên của nó được tô nhưng đoạn thẳng đơn vị nằm bên trong thì không được tô (xem hình); nếu không thì kho báu thuộc về bốn mươi tên cướp. Hỏi Alibaba có cách nào lấy được kho báu hay không? + Tìm tất cả các hàm số f: R vào R sao cho f(xy) = yf(x) + x + f(f(y) – f(x)) với mọi x, y thuộc R. + Cho tam giác ABC nhọn nội tiếp (O) có H là trực tâm và AD, BE, CF là các đường cao; CH cắt lại đường tròn ngoại tiếp tam giác AHB ở M và BH cắt lại đường tròn ngoại tiếp tam giác AHC ở N. Lấy T đối xứng H qua EF và gọi I là tâm đường tròn ngoại tiếp tam giác THD. 1) Chứng minh LH là tiếp tuyến của đường tròn ngoại tiếp tam giác HMN. 2) DM cắt (AHB) tại điểm thứ hai là X; DN cắt đường tròn ngoại tiếp tam giác AHC tại điểm thứ hai là Y. Gọi P là tâm đường tròn ngoại tiếp tam giác AXY. Chứng minh AP vuông góc với LD.