Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề kiểm tra học kỳ 1 Toán 10 năm 2019 - 2020 trường THPT Kim Liên - Hà Nội

Ngày … tháng 12 năm 2019, trường THPT Kim Liên – Hà Nội tổ chức kỳ thi kiểm tra chất lượng cuối HK1 môn Toán lớp 10 năm học 2019 – 2020. Đề kiểm tra học kỳ 1 Toán 10 năm 2019 – 2020 trường THPT Kim Liên – Hà Nội có mã đề 101, đề gồm 02 bài thi: bài thi trắc nghiệm gồm 25 câu, chiếm 5,0 điểm, học sinh làm bài trong 45 phút; bài thi tự luận gồm 03 câu, chiếm 5,0 điểm, học sinh làm bài trong 45 phút, đề thi có lời giải chi tiết. Trích dẫn đề kiểm tra học kỳ 1 Toán 10 năm 2019 – 2020 trường THPT Kim Liên – Hà Nội : + Mệnh đề nào sau đây là phủ định của mệnh đề “Mọi động vật đều di chuyển”? A. Có ít nhất một động vật di chuyển. B. Có ít nhất một động vật không di chuyển. C. Mọi động vật đều không di chuyển. D. Mọi động vật đều đứng yên. + Cho tam giác ABC. Tìm tập hợp các điểm M thỏa mãn |MB – MC| = |BM – BA|. A. Đường tròn tâm A, bán kính BC. B. Đường thẳng qua A và song song với BC. C. Đường thẳng AB. D. Trung trực đoạn BC. [ads] + Trong các phát biểu sau, phát biểu nào là mệnh đề? A. 3 là số nguyên tố lẻ nhỏ nhất. B. Đề thi hôm nay khó quá! C. Một tam giác cân thì mỗi góc đều bằng 60o phải không? D. Các em hãy cố gắng học tập! + Cho hình chữ nhật ABCD có AD = a, AB = x (x > 0), K là trung điểm của AD. a) Biểu diễn AC, BK theo AB, AD. b) Tìm x theo a để AC ⊥ BK. c) Đặt hình chữ nhật ABCD trong hệ trục tọa độ Oxy sao cho A(1;5), C(6;0). Gọi I là giao điểm của BK và AC, tìm tọa độ điểm I. + Khi nuôi cá thí nghiệm trong hồ, một nhà khoa học đã thấy rằng: Nếu trên mỗi đơn vị diện tích của mặt hồ có x con cá (x thuộc Z+) thì trung bình mỗi con cá sau một vụ cân nặng là 480 − 20x (gam). Hỏi phải thả bao nhiêu con cá trên một đơn vị diện tích của mặt hồ để sau mỗi vụ thu hoạch được nhiều cá nhất?

Nguồn: toanmath.com

Đọc Sách

Đề kiểm tra học kỳ 1 Toán 10 năm 2018 - 2019 trường chuyên Ngoại Ngữ - Hà Nội
giới thiệu đến quý thầy, cô và các em học sinh lớp 10 đề kiểm tra học kỳ 1 Toán 10 năm học 2018 – 2019 trường THPT chuyên Ngoại Ngữ – Hà Nội, đề thi được biên soạn hoàn toàn theo hình thức tự luận, gồm 1 trang với 7 bài toán, học sinh có 90 phút để làm bài, kỳ thi được diễn ra ngày 14/12/2018. Trích dẫn đề kiểm tra học kỳ 1 Toán 10 năm học 2018 – 2019 trường THPT chuyên Ngoại Ngữ – Hà Nội : + Cho parabol (P): y = x^2 – (m + 1)x + 2m (m là tham số) và đường thẳng d: y = 2x – 2. Tìm tất cả các giá trị của tham số m để đường thẳng d cắt (P) tại hai điểm phân biệt A, B sao cho độ dài đoạn AB bằng 2√5. + Cho tam giác ABC có các cạnh và góc thỏa mãn 2b.cosC + 3c.cos B = a. Chứng minh rằng: 3/ha^2 + 1/hc^2 = 1/hb^2. + Tìm m để phương trình x^3 + mx^2 – 3mx – 27 = 0 có ba nghiệm phân biệt x1, x2, x3 thỏa mãn 1/x1 + 1/x2 + 1/x3 = 10/9.
Đề kiểm tra học kỳ 1 Toán 10 năm 2018 - 2019 trường THPT Phan Đình Phùng - Hà Nội
Đề kiểm tra học kỳ 1 Toán 10 năm 2018 – 2019 trường THPT Phan Đình Phùng – Hà Nội mã đề 864 gồm 3 trang với 15 câu hỏi trắc nghiệm khách quan (chiếm 3 điểm) và 4 bài toán tự luận (chiếm 7 điểm), thời gian làm bài 90 phút, kỳ thi được diễn ra vào ngày 13 tháng 12 năm 2018. Trích dẫn đề kiểm tra học kỳ 1 Toán 10 năm 2018 – 2019 trường THPT Phan Đình Phùng – Hà Nội : + Trong các mệnh đề sau, mệnh đề nào đúng? A. Với mọi số nguyên n, nếu n là số lẻ thì n^2 +1 cũng là số lẻ. B. Với mọi số nguyên n, nếu n là số lẻ thì n^2 cũng là số lẻ. C. Với mọi số nguyên n, nếu n là số lẻ thì 3n – 1 cũng là số lẻ. D. Với mọi số nguyên n, nếu n là số lẻ thì 3n + 1 cũng là số lẻ. [ads] + Cho hàm số y = f(x) có tập xác định là [-3;3] và có đồ thị được biểu diễn bởi hình bên. Khẳng định nào sau đây là đúng? A. Hàm số y = f(x) + 2018 đồng biến trên các khoảng (-3;-1) và (1;3). B. Hàm số y = f(x) + 2018 đồng biến trên các khoảng (-2;1) và (1;3). C. Hàm số y = f(x) + 2018 nghịch biến trên các khoảng (-2;-1) và (0;1). D. Hàm số y = f(x) + 2018 nghịch biến trên khoảng (-3;-2). + Trong mặt phẳng với hệ trục tọa độ Oxy, cho ba điểm A(2;3), B(3;4) và C(3;-1). a/ Chứng minh A, B, C là 3 đỉnh của 1 tam giác. b/ Xác định tọa độ trực tâm H của tam giác ABC. c/ Tìm tọa độ điểm M trên đường phân giác của góc phần tư thứ nhất sao cho biểu thức P = MA^2 + MB^2 + MC^2 đạt giá trị nhỏ nhất.
Đề kiểm tra học kỳ 1 Toán 10 năm 2018 - 2019 trường M.V Lômônôxốp - Hà Nội
Đề kiểm tra học kỳ 1 Toán 10 năm 2018 – 2019 trường M.V Lômônôxốp – Hà Nội mã đề 131 được biên soạn theo hình thức trắc nghiệm khách quan kết hợp với tự luận, trong đó phần trắc nghiệm khách quan gồm 24 câu, chiếm 60% số điểm, phần tự luận gồm 4 câu, chiếm 40% số điểm, đề nhằm giúp nhà trường và giáo viên đánh giá tổng quát lại các kiến thức Toán 10 mà học sinh đã được học trong giai đoạn học kỳ 1 năm học 2018 – 2019, để làm tiền đề cho việc đánh giá và xếp loại học lực. Trích dẫn đề kiểm tra học kỳ 1 Toán 10 năm 2018 – 2019 trường M.V Lômônôxốp – Hà Nội : + Một cửa hàng bán đồng hồ. Ngày thứ nhất cửa hàng bán được tổng cộng 50 chiếc đồng hồ gồm cả đồng hồ nam và đồng hồ nữ. Ngày thứ 2 cửa hàng có khuyến mại giảm giá nên số đồng hồ nam bán được tăng 40%, số đồng hồ nữ bán được tăng 20% so với ngày thứ nhất và tổng số đồng hồ bán được ngày thứ hai là 67 chiếc. Hỏi trong ngày thứ nhất cửa hàng bán được số đồng hồ nam, đồng hồ nữ lần lượt là bao nhiêu? [ads] + Cho tam giác ABC có A(-2;1), B(1;-1), C(2;3). a) Tìm tọa độ điểm D sao cho tứ giác ABCD là hình bình hành. b) Tìm tọa độ trực tâm H của tam giác ABC. + Mệnh đề phủ định của mệnh đề “∃n ∈ N, n^2 + 1 chia hết cho 5”. A. “∀n ∈ N, n^2 + 1 không chia hết cho 5”. B. “∀n ∈ N, n^2 + 1 chia hết cho 5”. C. “∃n ∈ N, n^2 + 1 không chia hết cho 5”. D. “∀n ∉ N, n^2 + 1 không chia hết cho 5”.
Đề kiểm tra học kỳ 1 Toán 10 năm 2018 - 2019 trường THPT Bùi Thị Xuân - TP. HCM
Đề kiểm tra học kỳ 1 Toán 10 năm 2018 – 2019 trường THPT Bùi Thị Xuân – TP. HCM gồm 1 trang được biên soạn theo hình thức tự luận với 5 bài toán, học sinh làm bài trong 90 phút, kỳ thi được diễn ra vào thứ Tư, ngày 12/12/2018 nhằm đánh giá tổng quát các kiến thức môn Toán lớp 10 mà học sinh đã được học trong giai đoạn học kỳ 1 vừa qua, để làm cơ sở cho việc đánh giá, xếp loại học lực.