Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Chuyên đề hình học tọa độ Oxyz - Đặng Việt Đông

giới thiệu đến các em học sinh khối 12 tài liệu chuyên đề hình học tọa độ Oxyz (phiên bản đặc biệt), tài liệu gồm 901 trang trình bày đầy đủ lý thuyết, dạng toán và bài tập trắc nghiệm chủ đề phương pháp tọa độ trong không gian (Hình học 12 chương 3), tài liệu được biên soạn bởi thầy Đặng Việt Đông. CHỦ ĐỀ 1. HỆ TRỤC TỌA ĐỘ Dạng 1: Tìm tọa độ điểm, tọa độ vec tơ thỏa điều kiện cho trước. Dạng 2: Tính độ dài đoạn thẳng. Dạng 3: Xét sự cùng phương, sự đồng phẳng. Dạng 4: Bài toán về tích vô hướng, góc và ứng dụng. Dạng 5: Bài toán về tích có hướng và ứng dụng. CHỦ ĐỀ 2. PHƯƠNG TRÌNH MẶT CẦU Dạng 1: Tìm tâm và bán kính, điều kiện xác định mặt cầu. Dạng 2: Phương trình mặt cầu biết tâm, dễ tính bán kính (chưa học phương trình mặt phẳng). Dạng 3: Phương trình mặt cầu biết 2 đầu mút của đường kính. Dạng 4: Phương trình mặt cầu ngoại tiếp tứ diện. Dạng 5: Phương trình mặt cầu qua nhiều điểm, thỏa điều kiện. Dạng 6: Phương trình mặt cầu biết tâm, tiếp xúc với mặt phẳng. Dạng 7: Phương trình mặt cầu biết tâm và đường tròn trên nó. Dạng 8: Phương trình mặt cầu biết tâm và điều kiện của dây cung. Dạng 9: Phương trình mặt cầu biết tâm thuộc d, thỏa điều kiện. Dạng 10: Phương trình mặt cầu biết tâm thuộc mặt phẳng, thỏa điều kiện. Dạng 11: Phương trình mặt cầu biết tâm, thỏa điều kiện khác. Dạng 12: Phương trình mặt cầu thỏa mãn điều kiện đối xứng. Dạng 13: Toán max – min liên quan đến mặt cầu. Dạng 14: Điểm thuộc mặt cầu thỏa điều kiện. [ads] CHỦ ĐỀ 3. PHƯƠNG TRÌNH MẶT PHẲNG (CHƯA HỌC PHƯƠNG TRÌNH ĐƯỜNG THẲNG) Dạng 1: Tìm vectơ pháp tuyến, các vấn đề về lý thuyết. Dạng 2: Phương trình mặt phẳng trung trực của đoạn thẳng. Dạng 3: Phương trình mặt phẳng qua 1 điểm, dễ tìm vectơ pháp tuyến (không dùng tích có hướng). Dạng 4: Phương trình mặt phẳng qua 1 điểm, vectơ pháp tuyến tìm bằng tích có hướng. Dạng 5: Phương trình mặt phẳng qua 1 điểm, tiếp xúc với mặt cầu. Dạng 6: Phương trình mặt phẳng qua 1 điểm, cắt mặt cầu. Dạng 7: Phương trình mặt phẳng qua 1 điểm, thỏa điều kiện về góc, khoảng cách. Dạng 8: Phương trình mặt phẳng qua 1 điểm, thỏa điều kiện khác. Dạng 9: Phương trình mặt phẳng qua 2 điểm, vectơ pháp tuyến tìm bằng tích có hướng. Dạng 10: Phương trình mặt phẳng qua 2 điểm, thỏa điều kiện về góc, khoảng cách. Dạng 11: Phương trình mặt phẳng qua 2 điểm, thỏa điều kiện khác. Dạng 12: Phương trình mặt phẳng qua 3 điểm không thẳng hàng. Dạng 13: Phương trình mặt phẳng theo đoạn chắn. Dạng 14: Phương trình mặt phẳng song song với mặt phẳng, thỏa điều kiện. CHỦ ĐỀ 4. PHƯƠNG TRÌNH MẶT PHẲNG (CÓ SỬ DỤNG PHƯƠNG TRÌNH ĐƯỜNG THẲNG) Dạng 1: Tìm vectơ pháp tuyến, các vấn đề về lý thuyết. Dạng 2: Phương trình mặt phẳng qua 1 điểm, dễ tìm vectơ pháp tuyến (không dùng tích có hướng). Dạng 3: Phương trình mặt phẳng qua 1 điểm, vectơ pháp tuyến tìm bằng tích có hướng (đường – mặt). Dạng 4: Phương trình mặt phẳng qua 1 điểm và chứa đường thẳng. Dạng 5: Phương trình mặt phẳng qua 1 điểm, thỏa điều kiện khác. Dạng 6: Phương trình mặt phẳng qua 2 điểm, vectơ pháp tuyến tìm bằng tích có hướng. Dạng 7: Phương trình mặt phẳng qua 2 điểm, thỏa điều kiện về góc, khoảng cách. Dạng 8: Phương trình mặt phẳng chứa 1 đường thẳng, thỏa điều kiện với đường thẳng khác. Dạng 9: Phương trình mặt phẳng chứa 1 đường thẳng, thỏa điều kiện với mặt phẳng. Dạng 10: Phương trình mặt phẳng chứa 1 đường thẳng, thỏa điều kiện về góc, khoảng cách. Dạng 11: Phương trình mặt phẳng chứa 1 đường thẳng, thỏa điều kiện với mặt cầu. Dạng 12: Phương trình mặt phẳng theo đoạn chắn thỏa điều kiện với đường thẳng. Dạng 13: Phương trình mặt phẳng song song với mặt phẳng, thỏa điều kiện. Dạng 14: Toán max – min liên quan đến mặp phẳng. Dạng 15: Điểm thuộc mặt phẳng thỏa điều kiện. CHỦ ĐỀ 5. PHƯƠNG TRÌNH ĐƯỜNG THẲNG Dạng 1: Tìm vectơ chỉ phương, các vấn đề về lý thuyết. Dạng 2: Phương trình đường thẳng qua 1 điểm, dễ tìm vectơ chỉ phương (không dùng tích có hướng). Dạng 3: Phương trình đường thẳng qua 1 điểm, vectơ chỉ phương tìm bằng tích có hướng (cho 2 mặt phẳng). Dạng 4: Phương trình đường thẳng qua 1 điểm, vectơ chỉ phương tìm bằng tích có hướng (cho 2 đường thẳng). Dạng 5: Phương trình đường thẳng qua 1 điểm, vectơ chỉ phương tìm bằng tích có hướng (cho đường thẳng + mặt phẳng). Dạng 6: Phương trình đường thẳng qua 1 điểm, cắt d1, có liên hệ với d2. Dạng 7: Phương trình đường thẳng qua 1 điểm, cắt d, có liên hệ với mặt phẳng (P). Dạng 8: Phương trình đường thẳng qua 1 điểm, cắt d1 lẫn d2. Dạng 9: Phương trình đường thẳng qua 1 điểm, vừa cắt – vừa vuông góc với d. Dạng 10: Phương trình đường thẳng qua 1 điểm, vuông góc với d, thỏa điều kiện khoảng cách. Dạng 11: Phương trình đường thẳng qua 1 điểm, thỏa điều kiện khác. Dạng 12: Phương trình đường thẳng cắt 2 đường thẳng d1, d2, thỏa điều kiện khác. Dạng 13: Phương trình đường thẳng nằm trong (P), vừa cắt vừa vuông góc với d. Dạng 14: Phương trình đường thẳng thỏa điều kiện đối xứng. Dạng 15: Phương trình giao tuyến của 2 mặt phẳng. Dạng 16: Phương trình đường vuông góc chung của hai đường thẳng chéo nhau. Dạng 17: Phương trình hình chiếu vuông góc của d lên (P). Dạng 18: Toán max – min liên quan đến đường thẳng. Dạng 19: Điểm thuộc đường thẳng thỏa điều kiện. CHỦ ĐỀ 6. TOÁN TỔNG HỢP VỀ ĐƯỜNG THẲNG – MẶT PHẲNG – MẶT CẦU Dạng 1: Xét vị trí tương đối giữa 2 mặt phẳng. Dạng 2: Xét vị trí tương đối giữa 2 đường thẳng. Dạng 3: Xét vị trí tương đối giữa đường thẳng và mặt phẳng. Dạng 4: Xét vị trí tương đối giữa mặt phẳng và mặt cầu. Dạng 5: Xét vị trí tương đối giữa đường thẳng và mặt cầu. Dạng 6: Góc giữa hai mặt phẳng. Dạng 7: Góc giữa hai đường thẳng. Dạng 8: Góc giữa đường thẳng và mặt phẳng. Dạng 9: Khoảng cách từ 1 điểm đến 1 mặt phẳng. Dạng 10: Khoảng cách từ 1 điểm đến 1 đường thẳng. Dạng 11: Khoảng cách giữa hai đối tượng song song. Dạng 12: Khoảng cách giữa hai đường thẳng chéo nhau. Dạng 13: Tìm giao điểm của đường thẳng và mặt phẳng. Dạng 14: Tìm giao điểm của hai đường thẳng cắt nhau. Dạng 15: Tìm giao điểm của đường thẳng và mặt cầu. Dạng 16: Hình chiếu vuông góc của điểm lên đường, mặt (và ứng dụng). Dạng 17: Tìm điểm thỏa điều kiện đối xứng. CHỦ ĐỀ 7. MIN – MAX VÀ TOÁN THỰC TẾ Dạng 1: Toán max – min tổng hợp. Dạng 2: Toán thực tế.

Nguồn: toanmath.com

Đọc Sách

Phương pháp trắc nghiệm hình học giải tích mặt phẳng và không gian - Mộng Hy, Thế Cấp
Cuốn sách gồm 247 trang gồm lý thuyết, phương pháp giải toán và các bài tập trắc nghiệm có lời giải chi tiết chủ đề hình học giải tích. Cuốn sách gồm 10 chuyên đề được chia làm 2 phần: phần 1 là phần hình học giải tích trong mặt phẳng do TS. Đậu Thế Cấp biên soạn, phần 2 là phần hình học giải tích trong không gian do PGS.TS Nguyễn Mộng Hy biên soạn. Cuối cùng có phần trắc nghiệm giúp người đọc hoàn thiện hơn kiến thức của mình. Phần 1. Hình học giải tích trong mặt phẳng Chuyên đề 1. Vectơ và tọa độ trong mặt phẳng Chuyên đề 2. Đường thẳng trong mặt phẳng Chuyên đề 3. Đường tròn Chuyên đề 4. Elip Chuyên đề 5. Hypebol Chuyên đề 6. Parabol [ads] Phần 2. Hình học giải tích trong không gian Chuyên đề 7. Vectơ tọa độ trong không gian Chuyên đề 8. Mặt phẳng Chuyên đề 9. Đường thẳng trong không gian Chuyên đề 10. Mặt cầu
Phương pháp tọa độ hóa bài toán hình không gian - Trần Duy Thúc
Tài liệu gồm 24 trang giới thiệu phương pháp tọa độ hóa bài toán hình không gian và các ví dụ minh họa có lời giải chi tiết. Ưu điểm của phương pháp: Khi ta chọn được tọa độ các điểm thì chỉ cần áp dụng các kiến thức hình giải tích như khoảng cách, góc, chứng minh vuông góc. Tuy nhiên, với một số em học sinh thì việc tính được tọa độ là vấn đề? Về nguyên tắc thì em có thể chọn gốc tọa độ nằm bất cứ chổ nào, nhưng chọn chổ nào thì việc tính tọa độ là thuận lợi nhất? Sai lầm của không ít người dẫn đến việc tính tọa độ các điểm phức tạp là cứ thấy chân đường cao của hình chóp là chọn làm gốc tọa độ. Trong một số trường hợp em chọn như vậy sẽ dẫn đến việc tính tọa độ khó khăn và dễ bị chán nản. Để thuận lợi cho việc tính tọa độ em nhớ nguyên tắc sau đây: [ads] + Vẽ hình thực của đa giác đáy ra bên cạnh. + Ưu tiên chọn gốc tọa độ là góc vuông của đa giác đáy chứ không phải là ưu tiên chân đường cao. Tất nhiên nếu chân đường cao mà trùng gốc vuông ở đáy thì ta chọn gốc tọa ngay điểm đó luôn là tốt. + Nhìn vào hình thực này để tính tọa độ các điểm trong mặt phẳng đáy trước. Sau đó tính các điểm phát sinh và đỉnh. + Cứ quan tâm vào việc chọn trục Ox Oy ở đáy, sau đó gắn trục Oz vào là xong.
Gắn hệ tọa độ Oxyz để giải các bài toán hình học không gian - Phương Nguyễn
Tài liệu gồm 34 trang hướng dẫn giải bài toán hình học không gian bằng cách gắn hệ trục tọa độ Oxy. Tài liệu do tác giả Nguyễn Phương biên soạn. Như các bạn đều biết , môn Toán là một môn rất quan trọng và có tầm ảnh hưởng rất lớn tới việc xét tuyển vào Đại Học hay Cao Đẳng sau này. Do đó để có được số điểm cao trong môn này, ta cần phải có 1 vốn kiến thức cần thiết và hiểu rõ những khái niệm , bản chất toán học. Và trong chuyên đề ngày hôm nay mình sẽ đề cập đến 1 trong 3 câu hình học luôn xuất hiện trong đề thi đại học. Đó chính là các bài toán về hình học không gian thuần túy (cổ điển) với phương pháp gắn hệ trục Oxyz và giải như một bài toán giải tích bình thường. Đa số trong các bài toán này, mình thường thấy các bạn chỉ làm được 1/2 yêu cầu đề bài (giống mình lúc trước hihi :D). Các câu hỏi còn lại như tìm khoảng cách giữa 1 điểm đến đường thẳng hay tìm khoảng cách giữa 2 đường thẳng hoặc chứng minh song song, vuông góc v.v….. các bạn đều bỏ (và mình cũng vậy :D). Lý do là bởi vì bạn đã quên 1 số kiến thức về hình học ở lớp 11 và các cách tư duy dựng hình. Vì thế mình sẽ giúp các bạn vượt qua các bài toán ấy bằng phương pháp tọa độ hóa này. [ads] Ưu điểm: + Dễ hiểu + Dễ làm + Công việc chính là chỉ tính toán + Không cần chứng minh nhiều + Phù hợp với các bạn học hình yếu Nhược điểm: + Tính toán dễ sai + Đôi khi sẽ chậm hơn so với cách cổ điển + Ít được sử dụng + Đôi khi nhìn rất dễ nhầm lẫn
Ứng dụng phương pháp tọa độ để giải bài toán hình học không gian - Cao Văn Tuấn
Các em học sinh nên nhớ rằng “Không có phương pháp giải nào là vạn năng”, do đó các em phải không ngừng luyện tập để tạo ra sợi dây liên kết giữa các phần kiến thức của mình, khi đó các em mới có thể vận dụng linh hoạt các phương pháp sao cho bài giải của mình khoa học nhất, hay nhất. Đối với một số loại hình chóp, hình lăng trụ trong một số bài toán ta có thể sử dụng việc đặt một hệ trục tọa độ thích hợp, để chuyển từ việc giải hình học không gian tổng hợp thuần túy (mà việc này có thể gặp nhiều khó khăn trong dựng hình, tính toán với các em học sinh) sang việc tính toán dựa vào tọa độ. Cách giải bài toán như vậy gọi là phương pháp tọa độ hóa. Đối với phương pháp tọa độ hóa, việc tính toán có thể sẽ dài dòng và phức tạp hơn phương pháp hình học không gian thuần túy, tuy nhiên cách giải này thực sự rất hữu ích cho nhiều bạn học sinh mà việc nắm vững những phương pháp trong cách giải hình học không gian còn yếu hoặc những bài toán hình không gian về khoảng cách khó; về xác định GTLN, GTNN; các bài toán về quỹ tích điểm … Để có thể làn tốt được các bài toán giải bằng phương pháp tọa độ hóa thì các em học sinh phải nắm chắc các kiến thức (cụ thể là các công thức tính) của phần “Phương pháp tọa độ trong không gian” và những kiến thức cơ bản nhất của hình học không gian. [ads] Sau đây thầy sẽ trình bày cụ thể phương pháp Ứng dụng phương pháp tọa độ để giải toán hình học không gian: + Bước 1: Chọn hệ trục tọa độ Oxyz trong không gian: Vì Ox, Oy, Oz vuông góc với nhau từng đôi một nên nếu hình vẽ bài toán cho có chứa các cạnh vuông góc thì ta ưu tiên chọn các cạnh đó làm trục tọa độ. + Bước 2: Suy ra tọa độ của các đỉnh, điểm trên hệ trục tọa độ vừa ghép. + Bước 3: Sử dụng các kiến thức về tọa độ không gian để giải quyết bài toán. Đối với các công thức tính về vector, ta có thể sử dụng máy tính Casio để tăng tốc độ tính toán. Các em lưu ý rằng chúng ta có thể tọa độ hóa một khối đa diện bất kỳ. Chỉ cần chúng ta xác định được đường cao của khối đa diện đó và thông thường trên lý thuyết ta đều đặt gốc tọa độ là chân đường cao của khối đa diện; trục cao (trục Oz) là đường cao, sau đó ta dựng hai tia còn lại. Nhưng trong thực hành giải toán chúng ta căn cứ tùy bài toán để đặt hệ trục miễn sao chúng ta có thể tìm các tọa độ các đỉnh liên quan đến hình khối cần tính có thể tìm được một cách dễ dàng hoặc không quá phức tạp.