Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Chuyên đề hình học tọa độ Oxyz - Đặng Việt Đông

giới thiệu đến các em học sinh khối 12 tài liệu chuyên đề hình học tọa độ Oxyz (phiên bản đặc biệt), tài liệu gồm 901 trang trình bày đầy đủ lý thuyết, dạng toán và bài tập trắc nghiệm chủ đề phương pháp tọa độ trong không gian (Hình học 12 chương 3), tài liệu được biên soạn bởi thầy Đặng Việt Đông. CHỦ ĐỀ 1. HỆ TRỤC TỌA ĐỘ Dạng 1: Tìm tọa độ điểm, tọa độ vec tơ thỏa điều kiện cho trước. Dạng 2: Tính độ dài đoạn thẳng. Dạng 3: Xét sự cùng phương, sự đồng phẳng. Dạng 4: Bài toán về tích vô hướng, góc và ứng dụng. Dạng 5: Bài toán về tích có hướng và ứng dụng. CHỦ ĐỀ 2. PHƯƠNG TRÌNH MẶT CẦU Dạng 1: Tìm tâm và bán kính, điều kiện xác định mặt cầu. Dạng 2: Phương trình mặt cầu biết tâm, dễ tính bán kính (chưa học phương trình mặt phẳng). Dạng 3: Phương trình mặt cầu biết 2 đầu mút của đường kính. Dạng 4: Phương trình mặt cầu ngoại tiếp tứ diện. Dạng 5: Phương trình mặt cầu qua nhiều điểm, thỏa điều kiện. Dạng 6: Phương trình mặt cầu biết tâm, tiếp xúc với mặt phẳng. Dạng 7: Phương trình mặt cầu biết tâm và đường tròn trên nó. Dạng 8: Phương trình mặt cầu biết tâm và điều kiện của dây cung. Dạng 9: Phương trình mặt cầu biết tâm thuộc d, thỏa điều kiện. Dạng 10: Phương trình mặt cầu biết tâm thuộc mặt phẳng, thỏa điều kiện. Dạng 11: Phương trình mặt cầu biết tâm, thỏa điều kiện khác. Dạng 12: Phương trình mặt cầu thỏa mãn điều kiện đối xứng. Dạng 13: Toán max – min liên quan đến mặt cầu. Dạng 14: Điểm thuộc mặt cầu thỏa điều kiện. [ads] CHỦ ĐỀ 3. PHƯƠNG TRÌNH MẶT PHẲNG (CHƯA HỌC PHƯƠNG TRÌNH ĐƯỜNG THẲNG) Dạng 1: Tìm vectơ pháp tuyến, các vấn đề về lý thuyết. Dạng 2: Phương trình mặt phẳng trung trực của đoạn thẳng. Dạng 3: Phương trình mặt phẳng qua 1 điểm, dễ tìm vectơ pháp tuyến (không dùng tích có hướng). Dạng 4: Phương trình mặt phẳng qua 1 điểm, vectơ pháp tuyến tìm bằng tích có hướng. Dạng 5: Phương trình mặt phẳng qua 1 điểm, tiếp xúc với mặt cầu. Dạng 6: Phương trình mặt phẳng qua 1 điểm, cắt mặt cầu. Dạng 7: Phương trình mặt phẳng qua 1 điểm, thỏa điều kiện về góc, khoảng cách. Dạng 8: Phương trình mặt phẳng qua 1 điểm, thỏa điều kiện khác. Dạng 9: Phương trình mặt phẳng qua 2 điểm, vectơ pháp tuyến tìm bằng tích có hướng. Dạng 10: Phương trình mặt phẳng qua 2 điểm, thỏa điều kiện về góc, khoảng cách. Dạng 11: Phương trình mặt phẳng qua 2 điểm, thỏa điều kiện khác. Dạng 12: Phương trình mặt phẳng qua 3 điểm không thẳng hàng. Dạng 13: Phương trình mặt phẳng theo đoạn chắn. Dạng 14: Phương trình mặt phẳng song song với mặt phẳng, thỏa điều kiện. CHỦ ĐỀ 4. PHƯƠNG TRÌNH MẶT PHẲNG (CÓ SỬ DỤNG PHƯƠNG TRÌNH ĐƯỜNG THẲNG) Dạng 1: Tìm vectơ pháp tuyến, các vấn đề về lý thuyết. Dạng 2: Phương trình mặt phẳng qua 1 điểm, dễ tìm vectơ pháp tuyến (không dùng tích có hướng). Dạng 3: Phương trình mặt phẳng qua 1 điểm, vectơ pháp tuyến tìm bằng tích có hướng (đường – mặt). Dạng 4: Phương trình mặt phẳng qua 1 điểm và chứa đường thẳng. Dạng 5: Phương trình mặt phẳng qua 1 điểm, thỏa điều kiện khác. Dạng 6: Phương trình mặt phẳng qua 2 điểm, vectơ pháp tuyến tìm bằng tích có hướng. Dạng 7: Phương trình mặt phẳng qua 2 điểm, thỏa điều kiện về góc, khoảng cách. Dạng 8: Phương trình mặt phẳng chứa 1 đường thẳng, thỏa điều kiện với đường thẳng khác. Dạng 9: Phương trình mặt phẳng chứa 1 đường thẳng, thỏa điều kiện với mặt phẳng. Dạng 10: Phương trình mặt phẳng chứa 1 đường thẳng, thỏa điều kiện về góc, khoảng cách. Dạng 11: Phương trình mặt phẳng chứa 1 đường thẳng, thỏa điều kiện với mặt cầu. Dạng 12: Phương trình mặt phẳng theo đoạn chắn thỏa điều kiện với đường thẳng. Dạng 13: Phương trình mặt phẳng song song với mặt phẳng, thỏa điều kiện. Dạng 14: Toán max – min liên quan đến mặp phẳng. Dạng 15: Điểm thuộc mặt phẳng thỏa điều kiện. CHỦ ĐỀ 5. PHƯƠNG TRÌNH ĐƯỜNG THẲNG Dạng 1: Tìm vectơ chỉ phương, các vấn đề về lý thuyết. Dạng 2: Phương trình đường thẳng qua 1 điểm, dễ tìm vectơ chỉ phương (không dùng tích có hướng). Dạng 3: Phương trình đường thẳng qua 1 điểm, vectơ chỉ phương tìm bằng tích có hướng (cho 2 mặt phẳng). Dạng 4: Phương trình đường thẳng qua 1 điểm, vectơ chỉ phương tìm bằng tích có hướng (cho 2 đường thẳng). Dạng 5: Phương trình đường thẳng qua 1 điểm, vectơ chỉ phương tìm bằng tích có hướng (cho đường thẳng + mặt phẳng). Dạng 6: Phương trình đường thẳng qua 1 điểm, cắt d1, có liên hệ với d2. Dạng 7: Phương trình đường thẳng qua 1 điểm, cắt d, có liên hệ với mặt phẳng (P). Dạng 8: Phương trình đường thẳng qua 1 điểm, cắt d1 lẫn d2. Dạng 9: Phương trình đường thẳng qua 1 điểm, vừa cắt – vừa vuông góc với d. Dạng 10: Phương trình đường thẳng qua 1 điểm, vuông góc với d, thỏa điều kiện khoảng cách. Dạng 11: Phương trình đường thẳng qua 1 điểm, thỏa điều kiện khác. Dạng 12: Phương trình đường thẳng cắt 2 đường thẳng d1, d2, thỏa điều kiện khác. Dạng 13: Phương trình đường thẳng nằm trong (P), vừa cắt vừa vuông góc với d. Dạng 14: Phương trình đường thẳng thỏa điều kiện đối xứng. Dạng 15: Phương trình giao tuyến của 2 mặt phẳng. Dạng 16: Phương trình đường vuông góc chung của hai đường thẳng chéo nhau. Dạng 17: Phương trình hình chiếu vuông góc của d lên (P). Dạng 18: Toán max – min liên quan đến đường thẳng. Dạng 19: Điểm thuộc đường thẳng thỏa điều kiện. CHỦ ĐỀ 6. TOÁN TỔNG HỢP VỀ ĐƯỜNG THẲNG – MẶT PHẲNG – MẶT CẦU Dạng 1: Xét vị trí tương đối giữa 2 mặt phẳng. Dạng 2: Xét vị trí tương đối giữa 2 đường thẳng. Dạng 3: Xét vị trí tương đối giữa đường thẳng và mặt phẳng. Dạng 4: Xét vị trí tương đối giữa mặt phẳng và mặt cầu. Dạng 5: Xét vị trí tương đối giữa đường thẳng và mặt cầu. Dạng 6: Góc giữa hai mặt phẳng. Dạng 7: Góc giữa hai đường thẳng. Dạng 8: Góc giữa đường thẳng và mặt phẳng. Dạng 9: Khoảng cách từ 1 điểm đến 1 mặt phẳng. Dạng 10: Khoảng cách từ 1 điểm đến 1 đường thẳng. Dạng 11: Khoảng cách giữa hai đối tượng song song. Dạng 12: Khoảng cách giữa hai đường thẳng chéo nhau. Dạng 13: Tìm giao điểm của đường thẳng và mặt phẳng. Dạng 14: Tìm giao điểm của hai đường thẳng cắt nhau. Dạng 15: Tìm giao điểm của đường thẳng và mặt cầu. Dạng 16: Hình chiếu vuông góc của điểm lên đường, mặt (và ứng dụng). Dạng 17: Tìm điểm thỏa điều kiện đối xứng. CHỦ ĐỀ 7. MIN – MAX VÀ TOÁN THỰC TẾ Dạng 1: Toán max – min tổng hợp. Dạng 2: Toán thực tế.

Nguồn: toanmath.com

Đọc Sách

Phương trình mặt phẳng, phương trình đường thẳng và phương trình mặt cầu
Tài liệu gồm 31 trang, trình bày lý thuyết trọng tâm, các dạng toán trọng tâm kèm phương pháp giải và bài tập trắc nghiệm tự luyện chuyên đề phương trình mặt phẳng, phương trình đường thẳng và phương trình mặt cầu, có đáp án và lời giải chi tiết; hỗ trợ học sinh lớp 12 trong quá trình học tập chương trình Toán 12 phần Hình học chương 3. VẤN ĐỀ 1. PHƯƠNG TRÌNH MẶT PHẲNG. VẤN ĐỀ 2. PHƯƠNG TRÌNH ĐƯỜNG THẲNG. VẤN ĐỀ 1. PHƯƠNG TRÌNH MẶT CẦU. BÀI TẬP TỰ LUYỆN. LỜI GIẢI BÀI TẬP TỰ LUYỆN.
Một số bài toán cực trị trong hình học giải tích không gian
Tài liệu gồm 74 trang, hướng dẫn phương pháp giải một số bài toán cực trị trong hình học giải tích không gian Oxyz, đây là dạng toán vận dụng cao thường gặp trong chương trình Hình học 12 chương 3 và các đề thi tốt nghiệp THPT môn Toán. Phần 1 . Một số bài toán cực trị trong hình học giải tích không gian 1. Chủ đề 1. Tìm điểm thỏa điều kiện cực trị 1. + Bài toán 1: Cho điểm A cố định và điểm M di động trên hình (H) (đường thẳng, mặt phẳng). Tìm tọa độ M để độ dài AM nhỏ nhất 1. + Bài toán 2: Cho mặt phẳng (P) và hai điểm A, B phân biệt. Tìm điểm M thuộc (P) để MA + MB nhỏ nhất, |MA − MB| lớn nhất 2. + Bài toán 3: Cho mặt phẳng (P) và mặt cầu (S) cố định ((P) và (S) không có điểm chung). Xét điểm M di động trên (P) và N di động trên (S). Xác định vị trí M và N để độ dài MN nhỏ nhất (lớn nhất) 5. + Bài toán 4: Cho hai đường thẳng d1 và d2 chéo nhau. Tìm M thuộc d1, N thuộc d2 sao cho độ dài MN nhỏ nhất (đoạn vuông góc chung) 7. + Bài toán 5: Tìm điểm M thoả mãn điều kiện cực trị liên quan đến các yếu tố định lượng (diện tích, thể tích, khoảng cách, ..) 9. + Bài toán 6: Tìm tọa độ điểm M thuộc hình (H) (mặt phẳng, đường thẳng) sao cho độ dài của véc tơ tổng (hiệu) nhỏ nhất 11. + Bài toán 7:Tìm tọa độ điểm M thuộc hình (H) (mặt phẳng, đường thẳng) để biểu thức T = m.MA2 + n.MB2 + k.MC2 nhỏ nhất (lớn nhất) 13. Chủ đề 2. Lập phương trình mặt phẳng 16. + Bài toán 1: Viết phương trình mặt phẳng chứa M và cách A một khoảng lớn nhất 16. + Bài toán 2: Viết phương trình mặt phẳng chứa đường thẳng d (hoặc hai điểm B, C) và cách điểm A một khoảng lớn nhất 19. + Bài toán 3: Viết phương trình mặt phẳng chứa A và song song với ∆ và cách ∆ một khoảng lớn nhất 22. + Bài toán 4: Viết phương trình mặt phẳng chứa d và tạo với mặt phẳng (Q) một góc nhỏ nhất 24. + Bài toán 5: Viết phương trình mặt phẳng chứa d và tạo với d0 một góc lớn nhất 26. + Bài toán 6: Viết phương trình mặt phẳng đi qua A và cắt mặt cầu theo một đường tròn giao tuyến có bán kính nhỏ nhất 28. + Bài toán 7: Viết phương trình mặt phẳng chứa d và cắt mặt cầu theo một đường tròn giao tuyến có bán kính nhỏ nhất 29. Chủ đề 3. Lập phương trình đường thẳng 33. + Bài toán 1: Viết phương trình đường thẳng d nằm trong mặt phẳng (P) và đi qua M sao cho khoảng cách từ A đến d lớn nhất 33. + Bài toán 2: Viết phương trình đường thẳng d nằm trong mặt phẳng (P) và đi qua M sao cho khoảng cách từ A đến d nhỏ nhất 34. + Bài toán 3: Viết phương trình đường thẳng d nằm trong mặt phẳng (P), đi qua M và tạo với d0 một góc lớn nhất 36. + Bài toán 4: Viết phương trình đường thẳng d nằm trong mặt phẳng (P), đi qua M và tạo với d0 một góc nhỏ nhất 37. + Bài toán 5: Cho mặt phẳng (P) và mặt cầu (S) cắt nhau theo một đường tròn giao tuyến (C) và điểm A nằm trong hình tròn (C). Viết phương trình đường thẳng d đi qua điểm A và cắt (C) tại hai điểm M, N thỏa mãn độ dài MN ngắn nhất 40. Phần 2 . Đáp án và hướng dẫn giải bài tập tương tự của từng Chủ đề 42. A Đáp án bài tập tương tự của từng Chủ đề 42. B Lời giải chi tiết bài tập tương tự của từng Chủ đề 42.
Toàn tập phương pháp tọa độ trong không gian cơ bản
Tài liệu gồm 90 trang, được biên soạn bởi thầy giáo Lương Tuấn Đức (Giang Sơn), tuyển chọn hệ thống bài tập trắc nghiệm chuyên đề phương pháp tọa độ trong không gian cơ bản lớp 12 THPT, giúp học sinh rèn luyện khi học chương trình Hình học 12 chương 3. + Đại cương hệ trục tọa độ Oxyz p1. + Đại cương hệ trục tọa độ Oxyz p2. + Đại cương hệ trục tọa độ Oxyz p3. + Đại cương hệ trục tọa độ Oxyz p4. + Đại cương hệ trục tọa độ Oxyz p5. + Đại cương hệ trục tọa độ Oxyz p6. + Đại cương hệ trục tọa độ Oxyz p7. + Đại cương hệ trục tọa độ Oxyz p8. + Mặt phẳng Oxyz p1. + Mặt phẳng Oxyz p2. + Mặt phẳng Oxyz p3. + Mặt phẳng Oxyz p4. + Mặt phẳng Oxyz p5. + Mặt phẳng Oxyz p6. + Mặt phẳng Oxyz p7. + Mặt phẳng Oxyz p8. + Mặt cầu Oxyz p1. + Mặt cầu Oxyz p2. + Mặt cầu Oxyz p3. + Mặt cầu Oxyz p4. + Mặt cầu Oxyz p5. + Mặt cầu Oxyz p6. + Mặt cầu Oxyz p7. + Mặt cầu Oxyz p8. + Đường thẳng Oxyz p1. + Đường thẳng Oxyz p2. + Đường thẳng Oxyz p3. + Đường thẳng Oxyz p4. + Đường thẳng Oxyz p5. + Đường thẳng Oxyz p6. + Đường thẳng Oxyz p7. + Đường thẳng Oxyz p8. + Liên kết mặt phẳng – đường thẳng Oxyz p1. + Liên kết mặt phẳng – đường thẳng Oxyz p2. + Liên kết mặt phẳng – đường thẳng Oxyz p3. + Liên kết mặt phẳng – đường thẳng Oxyz p4. + Liên kết mặt phẳng – đường thẳng Oxyz p5. + Liên kết mặt phẳng – đường thẳng Oxyz p6. + Liên kết mặt phẳng – đường thẳng Oxyz p7. + Liên kết mặt phẳng – đường thẳng Oxyz p8. + Tổng hợp tọa độ không gian Oxyz p1. + Tổng hợp tọa độ không gian Oxyz p2. + Tổng hợp tọa độ không gian Oxyz p3. + Tổng hợp tọa độ không gian Oxyz p4. + Tổng hợp tọa độ không gian Oxyz p5. + Tổng hợp tọa độ không gian Oxyz p6. + Tổng hợp tọa độ không gian Oxyz p7. + Tổng hợp tọa độ không gian Oxyz p8.
Các bài toán chọn lọc trong hệ tọa độ Oxyz (phần 2) - Nguyễn Xuân Chung
Tài liệu gồm 99 trang, được biên soạn bởi thầy giáo Nguyễn Xuân Chung, tuyển chọn và hướng dẫn phương pháp giải các bài toán chọn lọc trong hệ tọa độ Oxyz (phần 2), giúp học sinh lớp 12 tham khảo khi học chương trình Hình học 12 chương 3: Phương pháp tọa độ trong không gian. PHẦN 2 : CÁC BÀI TOÁN TẬP HỢP ĐIỂM; GTLN – GTNN. Trong phần 2 này chúng ta nghiên cứu các bài toán có nội dung về quỹ tích và giá trị lớn nhất, giá trị nhỏ nhất. Thông thường: Các bài toán tập hợp điểm cũng chính là các bài toán về min – max bởi vì khi tập hợp điểm thỏa mãn điều kiện nhất định thì sẽ đạt min – max. Tuy nhiên: Bài toán tập hợp điểm thiên về vị trí tương đối và tính toán, còn bài toán về min – max thiên về khảo sát hàm số và bất đẳng thức. Từ đó chúng ta cũng thấy được phương pháp giải có đặc trưng riêng. + Bài toán tập hợp điểm: Thường sử dụng phương pháp véc tơ, các định lý trong tam giác, hình bình hành, sự đối xứng, song song, vuông góc. + Bài toán min – max: Thường sử dụng phương pháp khử dần ẩn (Thêm biến, đổi biến, dồn biến), khảo sát cực trị, bất đẳng thức B.C.S, Mincopxki. Như vậy trong phần này các bài toán có mức độ Vận dụng – Vận dụng cao. Để giải nhanh thì chúng ta không chỉ nắm vững kiến thức mà còn sử dụng một số công thức tính nhanh, kỹ năng sử dụng CASIO. Nếu chỉ làm tự luận thì cũng có kết quả nhưng thi trắc nghiệm thì thời gian không nhiều!. Các em cần tính tổng thời gian của quy trình giải một bài toán khó như sau: + Đọc hiểu đề và yêu cầu của bài toán: Đọc để hiểu nội dung của bài toán là gì? + Tái hiện kiến thức: Trong bài toán chúng ta cần thiết những kiến thức nào? + Xác định các yếu tố cần giải: Chẳng hạn mặt cầu thì cần biết tâm, bán kính. + Biến đổi, tính toán: Đây là quy trình cuối cùng dẫn đến kết quả và trả lời, có nhiều khi phải vẽ hình minh họa thì càng mất nhiều thời gian. Trong phần này, các bài toán có chọn lọc và được biên soạn theo chủ đề: Điểm – mặt phẳng, Điểm – Mặt cầu, Điểm – Đường thẳng, và tổ hợp của các yếu tố trên. Trong phần 1, tôi đã đưa ra một số kiến thức bổ xung và công thức tính nhanh, nên phần này tôi không nêu ra. Tuy nhiên, trong phần này cũng có kiến thức bổ xung hữu ích để giúp chúng ta giải nhanh, từ đó mới tiết kiệm được thời gian toàn bài thi. Đặc biệt trong phần này ta nghiên cứu bài toán mà tạm gọi là “Định luật phản xạ ánh sáng đối với gương phẳng”. I. BỔ XUNG ‐ BÀI TOÁN VỀ TÂM TỈ CỰ. II. BÀI TOÁN VỀ TỔ HỢP VÉC TƠ. III. BÀI TOÁN VỀ QUỸ TÍCH – VỊ TRÍ TƯƠNG ĐỐI. IV. BÀI TOÁN VỀ TỔNG – HIỆU KHOẢNG CÁCH. V. BÀI TOÁN TỔNG HỢP CUỐI PHẦN 2. VI. PHỤ LỤC.