Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Một số phương pháp giải bài toán phương trình nghiệm nguyên

Tài liệu gồm 67 trang, hướng dẫn một số phương pháp giải bài toán phương trình nghiệm nguyên, kèm các ví dụ minh họa có đáp số và hướng dẫn giải chi tiết. I. MỘT SỐ PHƯƠNG PHÁP GIẢI PHƯƠNG TRÌNH NGHIỆM NGUYÊN Phương pháp 1 . Sử dụng các tính chất về quan hệ chia hết. Khi giải các phương trình nghiệm nguyên cần vận dụng linh hoạt các tính chất về chia hết, đồng dư, tính chẵn lẻ,… để tìm ra điểm đặc biệt của các ẩn số cũng như các biểu thức chứa ẩn trong phương trình, từ đó đưa phương trình về các dạng mà ta đã biết cách giải hoặc đưa về những phương trình đơn giản hơn. + Xét số dư hai vế của phương trình để chỉ ra phương trình không có nghiệm, tính chẵn lẻ của các vế. + Đưa phương trình về dạng phương trình ước số. + Phát hiện tính chia hết của các ẩn. + Sử dụng tính đồng dư của các đại lượng nguyên. Phương pháp 2 . Đưa hai vế về tổng các bình phương. Ý tưởng của phương pháp là biến đổi phương trình về dạng vế trái là tổng của các bình phương và vế phải là tổng của các số chính phương. Phương pháp 3 . Sử dụng các tính chất của số chính phương. Một số tính chất của số chính phương thường được dùng trong giải phương trình nghiệm nguyên. + Một số tính chất về chia hết của số chính phương. + Nếu 2 2 a n a1 với a là số nguyên thì n không thể là số chính phương. + Nếu hai số nguyên dương nguyên tố cùng nhau có tích là một số chính phương thì mỗi số đếu là số chính phương. + Nếu hai số nguyên liên tiếp có tích là một số chính phương thì một trong hai số nguyên đó bằng 0. Phương pháp 4 . Phương pháp đánh giá. Trong khi giải các phương trình nghiệm nguyên rất cần đánh giá các miền giá trị của các ẩn, nếu số giá trị mà biến số có thể nhận không nhiều có thể dùng phương pháp thử trực tiếp để kiểm tra. Để đánh giá được miền giá trị của biến số cần vận dụng linh hoạt các tính chất chia hết, đồng dư, bất đẳng thức. + Phương pháp sắp thứ tự các ẩn. + Xét khoảng giá trị của các ẩn. + Sử dụng các bất đẳng thức Cauchy, Bunhiacopxki. Phương pháp 5 . Sử dụng tính chất của phương trình bậc hai. Ý tưởng của phương pháp là quy phương trình đã cho về dạng phương trình bậc hai một ẩn, các ẩn còn lại đóng vai trò tham số. Khi đó các tính chất của phương trình bậc hai thường được sử dụng dưới các dạng như sau: + Sử dụng điều kiện có nghiệm ∆ ≥ 0 của phương trình bậc hai. + Sử dụng hệ thức Vi – et. + Sử dụng điều kiện ∆ là số chính phương. Phương pháp 6 . Phương pháp lùi dần vô hạn. Ý tưởng của phương pháp lùi dần vô hạn có thể hiểu như sau: Giả sử (x y z 0 0 0) là nghiệm của f x y z 0. Nhờ những biến đổi và suy luận số học ta tìm được một nghiệm khác (x y z 1 1 1) sao cho các nghiệm quan hệ với bộ nghiệm đầu tiên bởi một tỉ số k nào đó, chẳng hạn 0 1 0 10 1 x kx y ky z kz. Lập luận tương tự ta lại được bộ số nguyên (x y z 2 2 2) thỏa mãn 1 2 1 11 2 x kx y ky z kz. Quá trình cứ tiếp tục dẫn đến 0 00 x y z cùng chia hết cho n k với n là một số tự nhiên tuỳ ý. Điều này xảy ra khi và chỉ khi xyz0. Để rõ ràng hơn ta xét các ví dụ sau. II. MỘT SỐ DẠNG PHƯƠNG TRÌNH NGHIỆM NGUYÊN Phương trình nghiệm nguyên rất đa dạng và phong phú, nó có thể là phương trình một ẩn hay nhiều ẩn. Nó có thể là phương trình bậc nhất hoặc bậc cao. Cũng có những phương trình dạng đa thức hoặc dạng lũy thừa. Ta có thể chia phương trình nghiệm nguyên thành một số dạng như sau. 1. Phương trình nghiệm nguyên dạng đa thức. 2. Phương trình nghiệm nguyên dạng phân thức. 3. Phương trình nghiệm nguyên có chứa căn. 4. Phương trình nghiệm nguyên dạng lũy thừa. 5. Hệ phương trình nghiệm nguyên.

Nguồn: toanmath.com

Đọc Sách

Chuyên đề bất đẳng thức
Nội dung Chuyên đề bất đẳng thức Bản PDF - Nội dung bài viết Chuyên đề bất đẳng thức Chuyên đề bất đẳng thức Tài liệu này bao gồm 28 trang chứa các phương pháp chứng minh bất đẳng thức và ví dụ về việc áp dụng bất đẳng thức trong các trường hợp cụ thể. Những phương pháp được trình bày trong tài liệu này giúp độc giả hiểu rõ hơn về cách chứng minh và áp dụng bất đẳng thức trong các bài toán. Với nhiều ví dụ minh họa và các phần trình bày chi tiết, tài liệu này sẽ giúp cho việc học và nghiên cứu về bất đẳng thức trở nên dễ dàng và thuận lợi hơn.
Tài liệu ôn thi tuyển sinh vào môn Toán Trần Quốc Nghĩa
Nội dung Tài liệu ôn thi tuyển sinh vào môn Toán Trần Quốc Nghĩa Bản PDF - Nội dung bài viết Tài liệu ôn thi tuyển sinh môn Toán Trần Quốc Nghĩa Tài liệu ôn thi tuyển sinh môn Toán Trần Quốc Nghĩa Tài liệu ôn thi này bao gồm 160 trang với nội dung chi tiết và cụ thể để giúp các học sinh chuẩn bị cho kỳ thi tuyển sinh vào Trần Quốc Nghĩa. Tài liệu được chia thành các phần sau: Phần 1: BÀI TẬP THEO CHUYÊN ĐỀ - Vấn đề 1: CĂN THỨC - Vấn đề 2: HÀM SỐ VÀ ĐỒ THỊ + I. Hàm số bậc nhất + II. Hàm số bậc hai + III. Sự tương giao giữa parabol (P) và đường thẳng (d) - Vấn đề 3: PHƯƠNG TRÌNH + I. Phương trình bậc nhất + II. Phương trình bậc hai + III. Phương trình trùng phương + IV. Phương trình chứa căn thức và trị tuyệt đối + V. Phương trình chứa tham số + VI. Phương trình chứa ẩn ở mẫu. Phương trình bậc cao - Vấn đề 4: HỆ PHƯƠNG TRÌNH + I. Giải hệ phương trình + II. Hệ phương trình chứa tham số - Vấn đề 5: BẤT PHƯƠNG TRÌNH - Vấn đề 6: GIẢI TOÁN BẰNG CÁCH LẬP PHƯƠNG TRÌNH HỆ THỨC LẬP PT – HPT - Vấn đề 7: HÌNH HỌC + I. Hệ thức lượng trong tam giác + II. Đường tròn + III. Hình trụ – Hình nón – Hình cầu - Vấn đề 8: BÀI TẬP TỔNG HỢP Phần 2: ĐỀ THI BÌNH DƯƠNG Phần 3: ĐỀ THI TPHCM Phần 4: ĐỀ THI CÁC TỈNH NĂM 2015 – 2016 Tài liệu này sẽ giúp học sinh ôn tập hiệu quả và tự tin chuẩn bị cho kỳ thi tuyển sinh vào Trần Quốc Nghĩa. Mong rằng thông tin trên sẽ hữu ích cho tất cả các bạn học sinh đang hướng tới mục tiêu lớn của mình.
Hướng dẫn giải một số bài toán bất đẳng thức ôn thi vào
Nội dung Hướng dẫn giải một số bài toán bất đẳng thức ôn thi vào Bản PDF - Nội dung bài viết Hướng dẫn giải bài toán bất đẳng thức ôn thi vào lớp 10 Hướng dẫn giải bài toán bất đẳng thức ôn thi vào lớp 10 Tài liệu này bao gồm 9 trang, cung cấp lời giải chi tiết cho các bài toán bất đẳng thức thường gặp trong đề thi tuyển sinh vào lớp 10. Nội dung được trình bày một cách dễ hiểu và cụ thể, giúp học sinh nắm vững kiến thức cần thiết để giải các bài toán này. Chắc chắn rằng việc sử dụng tài liệu này sẽ giúp bạn chuẩn bị tốt cho kỳ thi sắp tới!
Tài liệu ôn thi vào môn Toán Vũ Văn Bắc
Nội dung Tài liệu ôn thi vào môn Toán Vũ Văn Bắc Bản PDF - Nội dung bài viết Chất lượng tài liệu ôn thi Toán Vũ Văn Bắc Chất lượng tài liệu ôn thi Toán Vũ Văn Bắc Tài liệu ôn thi Toán của Vũ Văn Bắc là một nguồn tư liệu hữu ích cho các học sinh đang ôn luyện vào môn Toán. Với tổng cộng 42 trang, tài liệu bao gồm nhiều vấn đề quan trọng: 1. Rút gọn biểu thức có chứa căn: Phần này giúp học sinh nắm vững kỹ năng rút gọn biểu thức để giải các bài toán liên quan. 2. Phương trình bậc hai một ẩn: Hướng dẫn cách giải phương trình bậc hai một ẩn một cách chi tiết và dễ hiểu. 3. Hệ phương trình đại số: Bao gồm các bài toán luyện tập về hệ phương trình để học sinh có thể áp dụng vào thực tế. 4. Các bài toán về đồ thị hàm số: Phần này giúp học sinh hiểu rõ hơn về đồ thị hàm số và cách vẽ đồ thị cho từng hàm số. 5. Giải toán bằng cách lập phương trình: Hướng dẫn cách giải các bài toán phức tạp bằng cách lập phương trình đúng. 6. Các bài toán hình học tổng hợp: Bao gồm các bài toán hình học đa dạng và phức tạp để học sinh rèn luyện kỹ năng giải bài toán. 7. Một số đề toán luyện thi: Cuối cùng, tài liệu cung cấp một số đề toán luyện thi giúp học sinh tự kiểm tra kiến thức và kỹ năng của mình. Với các vấn đề đa dạng và phong phú như vậy, tài liệu ôn thi Toán Vũ Văn Bắc sẽ giúp học sinh không chỉ tự tin hơn trong việc ôn luyện môn Toán mà còn nắm vững kiến thức cần thiết để đạt được kết quả cao trong kỳ thi sắp tới.