Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề khảo sát lớp 9 môn Toán lần 3 năm 2022 2023 phòng GD ĐT Mê Linh Hà Nội

Nội dung Đề khảo sát lớp 9 môn Toán lần 3 năm 2022 2023 phòng GD ĐT Mê Linh Hà Nội Bản PDF - Nội dung bài viết Đề khảo sát Toán lớp 9 lần 3 năm 2022 - 2023 phòng GD&ĐT Mê Linh - Hà Nội Đề khảo sát Toán lớp 9 lần 3 năm 2022 - 2023 phòng GD&ĐT Mê Linh - Hà Nội Sytu xin gửi đến quý thầy cô và các em học sinh lớp 9 bộ đề thi khảo sát chất lượng môn Toán lần 3 năm học 2022 - 2023 của phòng Giáo dục và Đào tạo huyện Mê Linh, thành phố Hà Nội. Đề thi bao gồm câu hỏi đa dạng, được kèm theo đáp án và hướng dẫn chi tiết về cách chấm điểm. Câu hỏi mẫu: 1. Giải bài toán bằng cách lập phương trình hoặc hệ phương trình: Tháng thứ nhất hai đội sản xuất được 1100 sản phẩm. Sang tháng thứ hai, đội I làm vượt mức 15% và đội II làm vượt mức 20% so với tháng thứ nhất, vì vậy cả hai đội đã làm được 1295 sản phẩm. Hỏi trong tháng thứ nhất mỗi đội làm bao nhiêu sản phẩm? 2. Tính thể tích phần đá chìm trong nước của một cục đá được thả vào cốc thủy tinh hình trụ, biết diện tích đáy của cốc là 16,5cm2 và nước trong cốc dâng thêm 80mm khi đá chìm. 3. Chứng minh các điểm M, N, D, E cùng nằm trên một đường tròn và giải các phần còn lại của bài toán đường tròn và tam giác cho trước. Bộ đề thi này không chỉ giúp các em học sinh ôn tập kiến thức môn Toán mà còn rèn luyện kỹ năng giải quyết vấn đề và tư duy logic. Hy vọng rằng đề thi sẽ mang lại những trải nghiệm thú vị và bổ ích cho mọi người.

Nguồn: sytu.vn

Đọc Sách

Đề khảo sát Toán 9 lần 2 năm 2022 - 2023 trường THCS Nguyễn Trường Tộ - Hà Nội
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề khảo sát chất lượng môn Toán 9 lần 2 năm học 2022 – 2023 trường THCS Nguyễn Trường Tộ, quận Đống Đa, thành phố Hà Nội; kỳ thi được diễn ra vào ngày 18 tháng 05 năm 2023; đề thi có đáp án, lời giải chi tiết và hướng dẫn chấm điểm. Trích dẫn Đề khảo sát Toán 9 lần 2 năm 2022 – 2023 trường THCS Nguyễn Trường Tộ – Hà Nội : + Giải bài toán bằng cách lập phương trình hoặc hệ phương trình. Một ca nô đi từ bến A đến bến B rồi trở về A ngay. Hai bến sông cách nhau 40km và tổng thời gian cả đi và về của ca nô là 3 giờ 20 phút. Tính vận tốc riêng của ca nô biết vận tốc dòng nước là 5km/h. + Một cốc nước hình trụ có đường kính đáy là 10cm đang chứa nước nhưng chưa đầy. Người ta thả vào cốc 6 viên bi hình cầu giống hệt nhau thì thấy mực nước trong cốc dâng lên 5cm (và nước vẫn chưa đầy cốc). Tính bán kính của mỗi viên bi. + Cho đường tròn O có hai đường kính AB và CD vuông góc với nhau. Lấy điểm M thuộc đoạn thẳng AC (M khác AC). Đường thẳng qua điểm O vuông góc với đường thẳng OM cắt đường thẳng BC tại điểm N. Tia AN cắt tia DB tại điểm E. Gọi F là chân đường vuông góc của B đến đường thẳng CE. 1) Chứng minh tứ giác MONC là tứ giác nội tiếp. 2) Chứng minh CO CD CF CE và AC là tiếp tuyến của đường tròn ngoại tiếp tam giác AFE. 3) Khi điểm M thay đổi vị trí trên đoạn thẳng AC, chứng minh đường thẳng NF luôn đi qua một điểm cố định.
Đề khảo sát Toán 9 năm 2022 - 2023 phòng GDĐT Chí Linh - Hải Dương
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi khảo sát chất lượng môn Toán 9 năm học 2022 – 2023 phòng Giáo dục và Đào tạo UBND thành phố Chí Linh, tỉnh Hải Dương; kỳ thi được diễn ra vào tháng 05 năm 2023; đề thi có đáp án, lời giải chi tiết và hướng dẫn chấm điểm. Trích dẫn Đề khảo sát Toán 9 năm 2022 – 2023 phòng GD&ĐT Chí Linh – Hải Dương : + Một ô tô đi từ A đến B với vận tốc và thời gian dự định trước. Nếu ô tô đi với vận tốc 60 km/h thì đến B sớm hơn dự định 20 phút. Nếu ô tô đi với vận tốc 40 km/h thì đến B muộn hơn dự định 30 phút. Tính quãng đường AB và thời gian dự định đi. + Cho phương trình: x2 – 3x – m – 2 = 0. Tìm m để phương trình có hai nghiệm phân biệt thỏa mãn: 3×1 + x22 = 14. + Cho tam giác ABC có ba góc nhọn, AB < AC và nội tiếp đường tròn (O). Ba đường cao AD, BE, CF cắt nhau tại H. Tia AD cắt đường tròn (O) ở K (với K khác A). Tiếp tuyến tại C của đường tròn (O) cắt đường thẳng FD tại M. 1) Chứng minh tứ giác ACDF nội tiếp. 2) AM cắt đường tròn (O) tại I (với I khác A). Chứng minh MC2 = MI. MA và tam giác CMD cân. 3) MD cắt BI tại N. Chứng minh ba điểm C, K, N thẳng hàng.
Đề khảo sát Toán 9 lần 5 năm 2022 - 2023 phòng GDĐT Cẩm Giàng - Hải Dương
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề khảo sát chất lượng môn Toán 9 lần 5 năm học 2022 – 2023 phòng Giáo dục và Đào tạo huyện Cẩm Giàng, tỉnh Hải Dương; đề thi hình thức tự luận, gồm 01 trang với 05 bài toán, thời gian làm bài 120 phút; đề thi có đáp án và hướng dẫn chấm điểm. Trích dẫn Đề khảo sát Toán 9 lần 5 năm 2022 – 2023 phòng GD&ĐT Cẩm Giàng – Hải Dương : + Hai bến sông A và B cách nhau 60 km. Lúc 8 giờ sáng một canô xuôi dòng từ bến A đến bến B. Tại B canô nghỉ 2 giờ rồi ngược dòng từ B trở về A. Canô trở về đến bến A lúc 19 giờ cùng ngày. Tính vận tốc của canô khi nước yên lặng, biết vận tốc của dòng nước là 5 km/h. + Cho phương trình: x2 – (2m – 3)x + m2 – 3m = 0 (m là tham số). Tìm m để phương trình có 2 nghiệm phân biệt x1, x2 thỏa mãn 0 < x1 < x2 < 5. + Từ điểm M nằm ngoài đường tròn (O) kẻ hai tiếp tuyến MA và MB với đường tròn (A, B là các tiếp điểm). Lấy điểm C thuộc cung nhỏ AB sao cho cung CA nhỏ hơn cung CB, MC cắt đường tròn tại điểm thứ hai là D. Gọi H là trung điểm của CD. a) Chứng minh tứ giác MAHO nội tiếp; b) Gọi K là giao điểm của AB và CD, chứng minh MH.MK = MC.MD; c) Đường thẳng qua C song song với MB cắt AB tại E, DE cắt MB tại F, chứng minh F là trung điểm của BM.
Đề khảo sát Toán 9 năm 2022 - 2023 phòng GDĐT Gia Lâm - Hà Nội
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi khảo sát chất lượng môn Toán 9 năm học 2022 – 2023 phòng Giáo dục và Đào tạo huyện Gia Lâm, thành phố Hà Nội; kỳ thi được diễn ra vào thứ Năm ngày 18 tháng 05 năm 2023; đề thi có đáp án và hướng dẫn chấm điểm. Trích dẫn Đề khảo sát Toán 9 năm 2022 – 2023 phòng GD&ĐT Gia Lâm – Hà Nội : + Giải bài toán sau bằng cách lập phương trình hoặc hệ phương trình: Một ô tô đi trên đoạn đường AB với vận tốc 55km/h, rồi tiếp tục đi từ B đến C với vận tốc tăng thêm 5km/h. Biết quãng đường tổng cộng dài 290km và thời gian ô tô đi trên đoạn đường AB ít hơn thời gian ô tô đi trên đoạn đường BC là 1 giờ. Tính thời gian ô tô đi trên mỗi đoạn đường AB và BC. + Một lon coca chiều cao là 11,7cm; bán kính đáy bằng 3cm. Hỏi 3 lon coca như vậy có đổ đầy một chai 1 lít không? (lấy pi ~ 3,14 và làm tròn kết quả đến chữ thập phân thứ nhất). + Cho nửa đường tròn (O) đường kính AB = 2R. Điểm C (khác A) bất kì nằm trên nửa đường tròn sao cho AC < CB. Điểm D thuộc cung nhỏ BC sao cho COD = 90°. Gọi E là giao điểm của AD và BC, F là giao điểm của AC và BD. a) Chứng minh CEDF là tứ giác nội tiếp. b) Chứng minh FC.FA = FD.FB. c) Gọi I là trung điểm EF. Chứng minh IC là tiếp tuyến của (O). d) Hỏi khi C thay đổi thỏa mãn điều kiện bài toán, E thuộc đường tròn cố định nào?