Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Phương trình hàm trên tập rời rạc

Những bài toán về chủ đề phương trình hàm hiện nay đã trở nên khá phổ biến đối với các bạn học sinh yêu thích môn Toán, vì chúng đã xuất hiện thường xuyên hơn trong các đề thi học sinh giỏi môn Toán các cấp cũng như kì thi chọn đội tuyển HSG Toán cấp quốc gia, VMO hay các kì thi khu vực và quốc tế. Đặc biệt, trong các lớp dạng phương trình hàm, thì dạng phương trình hàm trên các tập rời rạc là một mảng được ít các học sinh chú ý tới bởi độ khó và chưa được tiếp xúc nhiều đồng thời ngoài việc sử dụng các kĩ thuật xử lý phương trình hàm cơ bản chúng ta còn phải sử dụng các tính chất số học rất đặc sắc của tập rời rạc như là: tính chia hết, tính chất của số nguyên tố, của số chính phương … Trong tài liệu này, nhóm tác giả Chinh Phục Olympic Toán: Nguyễn Minh Tuấn, Doãn Quang Tiến, Tôn Ngọc Minh Quân sẽ mang tới cho bạn đọc tuyển tập các bài toán phương trình hàm trên tập rời rạc và một số bài toán phương trình hàm khác hay và khó, với những lời giải vô cùng đặc sắc, nhằm giúp bạn đọc có thể có nhiều cách nhìn khác về mảng toán này đồng thời cũng như chuẩn bị cho các kì học sinh giỏi Toán, kỳ thi Olympic. [ads] Để giải quyết các bài toán phương trình hàm trên tập rời rạc mà có thể giải bằng các tính chất số học thì nên lưu ý đến một số dấu hiệu sau: + Nếu xuất hiện các biểu thức tuyến tính chứa lũy thừa, có thể nghĩ đến các bài toán liên quan đến cấp của phần tử, các phương trình đặc biệt như phương trình Pell hay phương trình Pythagore … hay đưa về việc xử lý các phương trình vô định nghiệm nguyên. + Nếu hàm số đã cho là hàm nhân tính, ta thường hay xét đến giá trị hàm số tại các điểm là số nguyên tố hoặc dãy vô hạn các số nguyên tố. + Sử dụng các đẳng thức và bất đẳng thức số học. + Và đặc biệt nhất, trong một số bài toán, hệ cơ số đếm có thể dùng để xây dựng nhiều dãy số có tính chất số học thú vị. Trong hệ cơ số 10 chúng ta có thể rất khó nhận ra quy luật của dãy, nhưng nếu chọn được hệ cơ số phù hợp thì bài toán có thể giải quyết đơn giản hơn rất nhiều. Trong tài liệu này, nhóm tác giả sẽ đề cập đến các bài toán phương trình hàm mà sử dụng các tính chất cũng như các phương pháp trong số học để giải, nhằm giúp bạn đọc hiểu rõ hơn và có một cái nhìn mới mẻ hơn về các phương pháp khác để giải phương trình hàm, bên cạnh đó nhóm tác giả cũng sẽ giới thiệu cho bạn đọc các bài toán phương trình hàm và khó.

Nguồn: toanmath.com

Đọc Sách

Nâng cao kỹ năng giải toán trắc nghiệm 100% dạng bài mũ - logarit, số phức - Tô Thị Nga
Sách gồm 318 trang tuyển tập các dạng toán và bài tập trắc nghiệm về các chủ đề mũ – logarit và số phức dành cho học sinh ôn luyện kỳ thi THPT Quốc gia. Nội dung sách : Chuyên đề 1. Mũ – Logarit Vấn đề 1. Lũy thừa – Mũ – Logarit + Chủ đề 1. Lũy thừa – Logarit + Chủ đề 2. Hàm số mũ và hàm số logarit Vấn đề 2. Phương trình mũ và logarit Vấn đề 3. Bất phương trình mũ và logarit 1. Phương pháp đưa về cùng cơ số 2. Phương pháp mũ hóa, logarit hóa 3. Phương pháp đặt ẩn phụ 4. Giải bất phương trình mũ – logarit bằng phương pháp hàm số 5. Giải bất phương trình mũ – logarit bằng phương pháp đánh giá – bất đẳng thức Vấn đề 4. Hệ phương trình và hệ bất phương trình mũ – logarit + Dạng 1. Giải hệ mũ – logarit bằng phương pháp biến đổi tương đương + Dạng 2. Giải hệ mũ – logarit bằng cách đặt ẩn phụ + Dạng 3. Giải hệ mũ – logarit bằng phương pháp hàm số + Dạng 4. Giải hệ mũ – logarit bằng phương pháp đánh giá bất đẳng thức Chuyên đề 2. Số phức Vấn đề 1. Số phức Vấn đề 2. Các bài toán về biểu diễn hình học của số phức Vấn đề 3. Tìm số phức có mô-đun lớn nhất, nhỏ nhất Vấn đề 4. Căn bậc hai của số phức và phương trình căn bậc hai – Các phương trình quy về bậc hai – Hệ phương trình Vấn đề 5. Dạng lượng giác của số phức Bạn đọc có thể xem thêm cuốn sách cùng bộ: Nâng cao kỹ năng giải toán trắc nghiệm 100% dạng bài hàm số và các bài toán liên quan – Tô Thị Nga
Sử dụng yếu tố Z+ trong việc giải phương trình hàm trên R+ - Lê Phúc Lữ
Tài liệu gồm 24 trang, được biên soạn bởi thầy giáo Lê Phúc Lữ (giảng viên trường Đại học Khoa Học Tự Nhiên thành phố Hồ Chí Minh), hướng dẫn sử dụng yếu tố Z+ trong việc giải phương trình hàm trên R+. TÓM TẮT NỘI DUNG: Trong bài viết nhỏ này, tác giả muốn nhắc lại một số tình huống có thể dùng các tính toán trên tập số nguyên dương để hỗ trợ cho việc giải phương trình hàm trên tập hợp số thực dương. Cụ thể hơn là về: việc dùng chu kỳ tuần hoàn, phương trình hàm cộng tính và các đánh giá bất đẳng thức khác. 1) Giới thiệu: Phương trình hàm trên R+ là một lớp hàm đặc thù và đòi hỏi các kỹ thuật biến đổi, đánh giá ở mức độ nhất định. Hiện tại các đề bài thi trong và ngoài nước có khai thác các dạng này khá nhiều, có các bài toán khó, thử thách. Trong bài viết này, ta sẽ xét một số cách tiếp cận có liên quan đến yếu tố số nguyên dương như sau: – Phương trình hàm cộng tính f(x) + f(y) = f(x + y) trên R+ thì có thể giải được ra nghiệm f(x) = ax vì lý do trên R+ thì hàm cộng tính cũng sẽ đồng biến. Tuy nhiên, nếu như ta không có điều kiện mạnh như cộng tính mà chỉ có điều kiện yếu hơn là f(nx) = nf(x) với x thuộc R+ và n thuộc Z+ thì sao? Câu trả lời là vẫn sẽ giải được, nhưng cần kết hợp với tính đồng biến. Điều này sẽ được mô tả rõ hơn thông qua các ví dụ bên dưới. – Các phương trình hàm có dùng đến kỹ thuật chu kỳ tuần hoàn để chứng minh hàm hằng hoặc tính đơn ánh thì việc xuất hiện của các yếu tố nguyên dương của chu kỳ là tất yếu. Đôi khi ta cần khai thác điều đó khéo léo thì mới xử lý triệt để được bài toán. – Ngoài ra, yếu tố nguyên dương cũng xuất hiện khá bất ngờ và lại có thể dùng trong các bài toán đánh giá các bất đẳng thức trung gian để giải phương trình hàm rất hiệu quả. Với tâm lý cho rằng việc chỉ chứng minh được f(n) = n với n thuộc Z+ thì khó có thể đi đến f(x) = x với x thuộc R+ có khi lại làm mất đi cơ hội giải quyết được bài toán. 2) Sử dụng tính chất tuần hoàn. 3) Khai thác tính đơn điệu. 4) Các dạng khác. 5) Bài tập tự luyện.
Một số tính chất hình học của đồ thị hàm số hữu tỉ - Phạm Tùng Quân
Tài liệu gồm 27 trang, được biên soạn bởi tác giả Phạm Tùng Quân (trường THPT chuyên Thăng Long, thành phố Đà Lạt, tỉnh Lâm Đồng), trình bày một số tính chất hình học của đồ thị hàm số hữu tỉ. Mục lục : 1 Giới thiệu 1. 2 Kiến thức chuẩn bị 3. 3 Tính lồi, lồi chặt của hàm số y = f(x) 5. 4 Hướng tiệm cận của đồ thị hàm số y = f(x) 10. 4.1 Hướng tiệm cận của đồ thị hàm số khi x tiến ra vô cùng 11. 4.2 Hướng tiệm cận của đồ thị hàm số khi x tiến đến α 14. 5 Hình học của đồ thị hàm số y = f(x) ngoài các đường tiệm cận 16. 6 Hình học của đồ thị hàm số y = f(x) giữa hai đường tiệm cận 16. 6.0.1 Trường hợp 1a: 17. 6.0.2 Trường hợp 1b: 18. 6.0.3 Trường hợp 2a: 18. 6.0.4 Trường hợp 2b: 20. 6.0.5 Trường hợp 3a: 21. 6.0.6 Trường hợp 3b: 23. Tài liệu tham khảo 25.
Kỹ thuật giảm biến và ứng dụng đạo hàm tìm GTNN - GTLN biểu thức nhiều biến
Tài liệu gồm 16 trang, được biên soạn bởi cô giáo Võ Thị Ngọc Ánh (trường THPT Chuyên Nguyễn Tất Thành, tỉnh Kon Tum), hướng dẫn một số kỹ thuật giảm biến và ứng dụng của đạo hàm để tìm giá trị nhỏ nhất, giá trị lớn nhất của biểu thức nhiều biến, hỗ trợ học sinh lớp 12 ôn thi học sinh giỏi môn Toán 12 cấp tỉnh. I. MỘT SỐ KỸ THUẬT GIẢM BIẾN VÀ ỨNG DỤNG CỦA ĐẠO HÀM ĐỂ TÌM GIÁ TRỊ NHỎ NHẤT, GIÁ TRỊ LỚN NHẤT CỦA BIỂU THỨC HAI BIẾN. 1. Các bước giải bài toán. Bước 1: Sử dụng các kĩ thuật giảm biến đưa biểu thức P = f(t) (t cũng có thể là x hoặc y) hoặc so sánh bất đẳng thức (≤, ≥) giữa P với hàm một biến f(t). + Kỹ thuật 1: Thế biến để chuyển P về một biến (là một trong các biến đã cho). + Kỹ thuật 2: Đặt biến phụ để chuyển P về một biến (là biến phụ đã đặt). + Kỹ thuật 3: Đánh giá bất đẳng thức (≤, ≥) và đặt biến phụ (nếu cần) để chuyển việc đánh giá P về khảo sát hàm một biến. Bước 2: Sử dụng các điều kiện ràng buộc (*), các bất đẳng thức cơ bản (được chứng minh trước đó) để tìm điều kiện “chặt” của biến t, thực chất đây là miền giá trị của t khi x, y thay đổi thỏa điều kiện (*). Bước 3: Xét sự biến thiên của hàm f(t) và suy ra kết quả về giá trị nhỏ nhất, giá trị lớn nhất (nếu có) của biểu thức P. 2. Các ví dụ minh họa. Kĩ thuật 1: Thế biến để đưa biểu thức P về một biến. Kĩ thuật 2: Đặt biến phụ để đưa biểu thức P về biểu thức theo một biến. + Dạng 1: Đặt biến phụ đối với biểu thức P có dạng đối xứng. + Dạng 2: Đặt biến phụ đối với điều kiện (*) là tổng các hạng tử đồng bậc hoặc biểu thức P thể hiện tính “đồng bậc” (đối với các biến x và y). Kĩ thuật 3: Đánh giá bất đẳng thức (≤, ≥) và đặt biến phụ (nếu cần) để chuyển việc đánh giá P về khảo sát hàm một biến. 3. Bài tập rèn luyện. II. MỘT SỐ KỸ THUẬT GIẢM BIẾN VÀ ỨNG DỤNG CỦA ĐẠO HÀM ĐỂ TÌM GIÁ TRỊ NHỎ NHẤT, GIÁ TRỊ LỚN NHẤT CỦA BIỂU THỨC BA BIẾN. 1. Các bước giải bài toán. Bước 1: Sử dụng các kĩ thuật giảm biến đưa biểu thức P = f(t) (t cũng có thể là x, y hoặc z) hoặc so sánh bất đẳng thức (≤, ≥)giữa P với hàm một biến f(t). + Kỹ thuật 1: Thế biến để chuyển P về một biến (là một trong các biến đã cho). + Kỹ thuật 2: Đặt biến phụ để chuyển P về một biến (là biến phụ đã đặt). + Kỹ thuật 3: Đánh giá bất đẳng thức (≤, ≥) và đặt biến phụ (nếu cần) để chuyển việc đánh giá P về khảo sát hàm một biến. Bước 2: Sử dụng các điều kiện ràng buộc (*), các bất đẳng thức cơ bản (được chứng minh trước đó) để tìm điều kiện “chặt” của biến t, thực chất đây là miền giá trị của t khi x, y, z thay đổi thỏa điều kiện (*). Bước 3: Xét sự biến thiên của hàm f(t) và suy ra kết quả về giá trị nhỏ nhất, giá trị lớn nhất (nếu có) đối với P. 2. Các ví dụ minh họa. Kỹ thuật 1: Thế biến để đưa biểu thức về một biến. Kỹ thuật 2: Đặt biến phụ để đưa biểu thức về một biến. Kỹ thuật 3: Đánh giá bất đẳng thức (≤, ≥) để so sánh biểu thức P với biểu thức chứa một biến. 3. Bài tập rèn luyện.