Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Chuyên đề độ dài đường tròn, cung tròn

Nội dung Chuyên đề độ dài đường tròn, cung tròn Bản PDF - Nội dung bài viết Chuyên Đề Độ Dài Đường Tròn, Cung TrònTrọng Tâm Cơ Bản Cần ĐạtBài Tập và Các Dạng ToánBài Tập Cơ Bản Về NhàNâng Cao Phát Triển Tư DuyTrắc Nghiệm Rèn Luyện Phản XạPhiếu Bài Tự Luyện Cơ Bản Và Nâng Cao Chuyên Đề Độ Dài Đường Tròn, Cung Tròn Tài liệu này bao gồm 29 trang, được biên soạn bởi tác giả Toán Học Sơ Đồ. Tài liệu tổng hợp kiến thức chính, phân loại dạng bài tập tự luận và trắc nghiệm về chuyên đề độ dài đường tròn, cung tròn. Được thiết kế để hỗ trợ học sinh trong quá trình học tập chương trình Hình học 9 chương 3 bài số 9. Đây là những kiến thức cơ bản mà học sinh cần nắm vững: Trọng Tâm Cơ Bản Cần Đạt Tóm Tắt Lý Thuyết: Bao gồm công thức tính độ dài đường tròn (chu vi đường tròn) và cung tròn. Học sinh sẽ học cách tính toán chu vi đường tròn và độ dài cung tròn dựa trên bán kính và góc quay. Bài Tập và Các Dạng Toán Dạng 1: Học sinh sẽ được yêu cầu tính độ dài đường tròn và cung tròn bằng cách áp dụng công thức đã học trong phần lý thuyết. Dạng 2: Đây là một số bài toán tổng hợp đòi hỏi học sinh kết hợp kiến thức đã học để giải quyết. Bài Tập Cơ Bản Về Nhà Học sinh sẽ được giao bài tập cơ bản về nhà để đảm bảo họ nắm chắc kiến thức cơ bản. Nâng Cao Phát Triển Tư Duy Phần này sẽ giúp học sinh mở rộng kiến thức và phát triển tư duy toán học thông qua các bài toán mở rộng và ứng dụng kiến thức đã học. Trắc Nghiệm Rèn Luyện Phản Xạ Phần này hỗ trợ học sinh rèn luyện kỹ năng tư duy nhanh, phản xạ thông qua việc giải trắc nghiệm. Phiếu Bài Tự Luyện Cơ Bản Và Nâng Cao Học sinh sẽ được cung cấp phiếu bài tập tự luyện để tự kiểm tra kiến thức cơ bản và nâng cao của mình.

Nguồn: sytu.vn

Đọc Sách

Tài liệu Toán 9 chủ đề giải hệ phương trình bằng phương pháp thế
Tài liệu gồm 19 trang, bao gồm kiến thức cần nhớ, các dạng toán và bài tập chủ đề giải hệ phương trình bằng phương pháp thế trong chương trình môn Toán 9, có đáp án và lời giải chi tiết. A. Tóm tắt lý thuyết. 1. Quy tắc thế. – Từ một phương trình của HPT đã cho (coi như phương trình thứ nhất), ta biểu diễn một ẩn theo ẩn kia rồi thế vào phương trình thứ hai để được một phương trình mới (chỉ còn một ẩn). – Dùng phương trình mới ấy để thay thế cho phương trình thứ hai trong hệ phương trình và giữ nguyên PT thứ nhất, ta được hệ phương trình mới tương đương với hệ phương trình đã cho. 2. Giải và biện luận phương trình: ax + b = 0. – Nếu 0 b a x a. – Nếu a ≠ 0 và b ≠ 0 thì phương trình vô nghiệm. – Nếu a = 0 và b = 0 thì phương trình có vô số nghiệm. B. Bài tập và các dạng toán. Dạng 1 : Giải hệ phương trình bằng phương pháp thế. Cách giải: Căn cứ vào quy tắc thế để giải HPT bậc nhất hai ẩn bằng phương pháp thế ta làm như sau: – Từ một phương trình của hệ phương trình đã cho (coi như PT thứ nhất), ta biểu diễn một ẩn theo ẩn kia rồi thế vào phương trình thứ hai để được một phương trình mới (chỉ còn một ẩn). – Dùng phương trình mới ấy để thay thế cho phương trình thứ hai trong hệ phương trình và giữ nguyên phương trình thứ nhất, ta được HPT mới tương đương với hệ phương trình đã cho. Dạng 2 : Giải hệ phương trình quy về hệ phương trình bậc nhất hai ẩn. Cách giải: – Biến đổi hệ phương trình đã cho về hệ phương trình bậc nhất hai ẩn. – Giải hệ phương trình bậc nhất hai ẩn tìm được. Dạng 3 : Giải hệ phương trình bằng phương pháp đặt ẩn phụ. Cách giải: Ta thực hiện theo các bước sau: + Bước 1: Chọn ẩn phụ cho các biểu thức của hệ phương trình đã cho để được hệ phương trình bậc nhất hai ẩn mới ở dạng cơ bản (tìm điều kiện của ẩn phụ nếu có). + Bước 2: Giải hệ phương trình bậc nhất hai ẩn bằng phương pháp thế, từ đó tìm nghiệm của hệ phương trình đã cho. Dạng 4 : Tìm điều kiện của tham số để hệ phương trình thỏa mãn điều kiện cho trước. Cách giải: Ta thường sử dụng các kiến thức sau: – Hệ phương trình bậc nhất hai ẩn có nghiệm 0 0 ax by c x y ax by c. – Đường thẳng d ax by c đi qua điểm M x y ax by c. BÀI TẬP VỀ NHÀ.
Tài liệu Toán 9 chủ đề giải hệ phương trình bằng phương pháp cộng đại số
Tài liệu gồm 20 trang, bao gồm kiến thức cần nhớ, các dạng toán và bài tập chủ đề giải hệ phương trình bằng phương pháp cộng đại số trong chương trình môn Toán 9, có đáp án và lời giải chi tiết. A. Tóm tắt lý thuyết. B. Bài tập và các dạng toán. Dạng 1 : Giải hệ phương trình bằng phương pháp cộng đại số. Cách giải: – Nếu hệ số của cùng một ẩn bằng nhau thì ta trừ vế với vế. – Nếu hệ số của cùng một ẩn đối nhau thì ta cộng vế với vế. – Nếu không có hệ số của ẩn nào bằng nhau hoặc đối nhau thì ta nhân hai vế của phương trình với số thích hợp rồi đưa về trường hợp thứ nhất. Dạng 2 : Giải hệ phương trình quy về hệ phương trình bậc nhất hai ẩn. Cách giải: Ta thực hiện theo các bước sau: + Bước 1: Biến đổi hệ phương trình đã cho về hệ phương trình bậc nhất hai ẩn. + Bước 2: Giải hệ phương trình bậc nhất hai ẩn bằng phương pháp cộng đại số. Dạng 3 : Giải hệ phương trình bằng phương pháp đặt ẩn phụ. Cách giải: Ta thực hiện theo hai bước: – Chọn ẩn phụ cho các biểu thức của hệ phương trình đã cho để được hệ phương trình bậc nhất hai ẩn mới ở dạng cơ bản. – Giải hệ phương trình bậc nhất hai ẩn bằng phương pháp cộng đại số, từ đó tìm nghiệm của hệ phương trình đã cho. Dạng 4 : Tìm điều kiện của tham số để hệ phương trình thỏa mãn điều kiện cho trước. Cách giải: Ta thường sử dụng các kiến thức sau: – Hệ phương trình bậc nhất hai ẩn có nghiệm 0 0 ax by c x y ax by c. – Đường thẳng d ax by c đi qua điểm M x y ax by c. BÀI TẬP VỀ NHÀ.
Tài liệu Toán 9 chủ đề giải bài toán bằng cách lập hệ phương trình
Tài liệu gồm 19 trang, bao gồm kiến thức cần nhớ, các dạng toán và bài tập chủ đề giải bài toán bằng cách lập hệ phương trình trong chương trình môn Toán 9, có đáp án và lời giải chi tiết. A. Kiến thức. Các bước giải bài toán bằng cách lập hệ phương trình: Bước 1: Lập hệ phương trình. – Chọn các ẩn số và đặt điều kiện, đơn vị thích hợp cho các ẩn số. – Biểu diễn các đại lượng chưa biết theo các ẩn và các đại lượng đã biết. – Lập hệ phương trình biểu thị sự tương quan giữa các đại lượng. Bước 2: Giải hệ phương trình vừa tìm được. Bước 3: Kết luận. – Kiểm tra xem trong các nghiệm của hệ phương trình, nghiệm nào thỏa mãn điều kiện của ẩn. – Kết luận bài toán. B. Các dạng toán. Dạng 1 : Toán về quan hệ giữa các số. Cách giải: – Biểu diễn số có hai chữ số: ab a b a 10 (0 9). – Biểu diễn số có ba chữ số: abc a b c a 100 10 (0 9). – Tổng nghịch đảo hai số x y là: 1 1 x y. Dạng 2 : Chuyển động trên sông nước. Phương pháp: Nắm vững công thức sau: – Nếu gọi quãng đường là S; Vận tốc là v; Thời gian là t. Ta có các công thức sau: S S S vt v t t v. – Gọi vận tốc thực của canô là 1 v; vận tốc dòng nước là 2 v. Khi đó ta có: + Vận tốc canô xuôi dòng là 1 2 v v. + Vận tốc canô ngược dòng là 1 2 v v. Dạng 3 : Chuyển động trên đường bộ. Cách giải: Áp dụng công thức: S S S vt v t t v. Dạng 4 : Toán có nội dung hình học. Cách giải: – Ghi nhớ công thức tính chu vi và diện tích của các loại hình sau: +) Chu vi tam giác: Bằng tổng độ dài ba cạnh. +) Chu vi hình chữ nhật: (a + b).2. – Diện tích các hình: Tam giác, hình chữ nhật, tam giác vuông, hình vuông, hình thang. Dạng 5 : Toán làm chung công việc. Cách giải: – Nếu một đội (người) làm xong công việc trong x (đơn vị thời gian: Ngày, giờ, phút …) thì một đơn vị thời gian đội (người) đó làm được 1 x công việc (xem toàn bộ công việc là −1). – Nếu một vòi nước chảy đầy bể trong x (đơn vị thời gian: Ngày, giờ, phút …) thì một đơn vị thời gian vòi nước đó chảy được 1 x (bể). – Ta thường xem toàn bộ công việc là 1. Dạng 6 : Toán về tỉ số phần trăm. Cách giải: – Chú ý rằng: %100 a a. – Tỉ số của hai số a và b là a/b.
Tài liệu Toán 9 chủ đề hệ phương trình bậc nhất hai ẩn chứa tham số
Tài liệu gồm 10 trang, bao gồm kiến thức cần nhớ, các dạng toán và bài tập chủ đề hệ phương trình bậc nhất hai ẩn chứa tham số trong chương trình môn Toán 9, có đáp án và lời giải chi tiết. A. Tóm tắt lý thuyết. Cho hệ phương trình bậc nhất hai ẩn: ax + by = c và a’x + b’y = c’ (*). 1. Để giải hệ phương trình (*) ta thường dùng phương pháp thế hoặc cộng đại số. 2. Từ hai phương trình của hệ phương trình (*), sau khi dùng phương pháp thế hoặc cộng đại số, ta thu được một phương trình mới (một ẩn). Khi đó số nghiệm của phương trình mới bằng số nghiệm của hệ phương trình đã cho. 3. Chú ý: Cách biện luận số nghiệm phương trình bậc nhất một ẩn ax + b = 0. – Nếu a ≠ 0 thì phương trình có nghiệm x = -b/a. – Nếu a = 0 ta được: 0x = -b. +) Nếu b = 0 thì phương trình có vô số nghiệm. +) Nếu b ≠ 0 thì phương trình vô nghiệm. B. Bài tập và các dạng toán. Dạng 1 : Giải và biện luận hệ phương trình. Cách giải: Để giải và biện luận hệ phương trình (*) ta làm như sau: + Bước 1: Từ hai phương trình (*), sau khi dùng phương pháp thế hoặc cộng đại số, ta thu được một phương trình mới (chỉ còn một ẩn). + Bước 2: Giải và biện luận phương trình mới, từ đó đi đến kết luận về giải và biện luận hệ phương trình đã cho. Dạng 2 : Tìm điều kiện của tham số để hệ phương trình thỏa mãn điều kiện cho trước. Cách giải: Một số bài toán thường gặp của dạng này là: + Bài toán 1: Tìm điều kiện nguyên của tham số để hệ phương trình có nghiệm (x;y) trong đó x và y cùng là những số nguyên. + Bài toán 2: Tìm điều kiện của tham số để hệ phương trình có nghiệm duy nhất (x;y) thỏa mãn hệ thức cho trước. BÀI TẬP VỀ NHÀ.