Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề chọn học sinh giỏi lớp 8 môn Toán năm 2021 2022 phòng GD ĐT Hải Hậu Nam Định

Nội dung Đề chọn học sinh giỏi lớp 8 môn Toán năm 2021 2022 phòng GD ĐT Hải Hậu Nam Định Bản PDF - Nội dung bài viết Đề chọn học sinh giỏi lớp 8 môn Toán năm 2021-2022 phòng GD&ĐT Hải Hậu Nam Định Đề chọn học sinh giỏi lớp 8 môn Toán năm 2021-2022 phòng GD&ĐT Hải Hậu Nam Định Sytu hân hạnh giới thiệu đến quý thầy cô giáo và các em học sinh đề khảo sát chọn học sinh giỏi môn Toán lớp 8 năm học 2021-2022 của phòng GD&ĐT Hải Hậu, tỉnh Nam Định. Chúng tôi mong muốn nhận được sự quan tâm và hỗ trợ từ tất cả các bên để giúp học sinh phát triển tư duy và kiến thức. Đề thi này nhằm mục đích tìm ra những học sinh có năng khiếu và khả năng xuất sắc trong môn Toán, giúp họ phát triển tốt nhất khả năng của mình. Chúng tôi hy vọng rằng đây sẽ là cơ hội để các em thể hiện sự thông minh, nhanh nhạy và kiên trì trong học tập, từ đó tạo ra những tài năng mới cho xã hội trong tương lai.

Nguồn: sytu.vn

Đọc Sách

Đề khảo sát HSG Toán 8 vòng 2 năm 2023 - 2024 phòng GDĐT Vũ Thư - Thái Bình
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 8 đề khảo sát chất lượng học sinh giỏi môn Toán 8 cấp huyện vòng 2 năm học 2023 – 2024 phòng Giáo dục và Đào tạo huyện Vũ Thư, tỉnh Thái Bình; kỳ thi được diễn ra vào ngày 30 tháng 12 năm 2023. Trích dẫn Đề khảo sát HSG Toán 8 vòng 2 năm 2023 – 2024 phòng GD&ĐT Vũ Thư – Thái Bình : + Đa thức f(x) chia cho (x + 1) dư 2, chia cho (x – 2) dư 5, chia cho (x + 1)(x – 2) thì thương là 5x – 1 và còn dư. Tính f(4). + Cho tam giác ABC vuông tại A, kẻ phân giác trong AD (D thuộc BC), gọi M, N lần lượt là hình chiếu của D trên AB và AC. BN cắt DM tại E, CM cắt DN tại F, gọi K là giao điểm của BN và CM. a/ Tứ giác AMDN là hình gì? Vì sao? b/ Chứng minh: AB AC. c/ Chứng minh: AK vuông góc BC. + Cho tam giác ABC có AB + AC = 2BC. Gọi I là giao điểm ba đường phân giác trong, G là trọng tâm của ABC (I khác G). Chứng minh rằng IG // BC.
Đề HSG Toán 8 vòng 2 năm 2023 - 2024 trường THCS Trần Mai Ninh - Thanh Hóa
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 8 đề khảo sát chọn đội tuyển học sinh giỏi môn Toán 8 vòng 2 năm học 2023 – 2024 trường THCS Trần Mai Ninh, tỉnh Thanh Hóa; kỳ thi được diễn ra vào ngày 09 tháng 12 năm 2023; đề thi có đáp án, lời giải chi tiết và hướng dẫn chấm điểm. Trích dẫn Đề HSG Toán 8 vòng 2 năm 2023 – 2024 trường THCS Trần Mai Ninh – Thanh Hóa : + Với a, b là các số nguyên. Chứng minh rằng nếu 2 2 4a 3ab 11b chia hết cho 5 thì 4 4 a b chia hết cho 5. Tìm phần dư của phép chia đa thức P x cho (x 1 2). Biết rằng đa thức P x chia cho (x − 1) dư 7 và chia cho (x + 2) dư 1. + Cho hình vuông ABCD. Vẽ tam giác AEB đều nằm trong hình vuông. Đường thẳng AE cắt BD ở F, DE cắt FC ở K. Chứng minh rằng: a) Tam giác DFE cân. b) K là trung điểm của CF. + Cho tam giác IHK cân ở I đường cao IM. Trên tia đối của HM vẽ N sao cho H là trung điểm của MN. Vẽ MP vuông góc với IH. Gọi Q là trung điểm của IP. Chứng minh rằng: NP vuông góc với QM.
Đề HSG Toán 8 vòng 1 năm 2023 - 2024 trường THCS Trần Mai Ninh - Thanh Hóa
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 8 đề khảo sát chọn đội tuyển học sinh giỏi môn Toán 8 vòng 1 năm học 2023 – 2024 trường THCS Trần Mai Ninh, tỉnh Thanh Hóa; kỳ thi được diễn ra vào ngày 02 tháng 12 năm 2023; đề thi có đáp án, lời giải chi tiết và hướng dẫn chấm điểm. Trích dẫn Đề HSG Toán 8 vòng 1 năm 2023 – 2024 trường THCS Trần Mai Ninh – Thanh Hóa : + Tìm số tự nhiên n để B = n3 – n2 – 7n + 10 là số nguyên tố. Tìm n nguyên để C = n4 + 2n3 + 2n2 + n +7 là số chính phương. + Cho tam giác ABC vuông tại A, O là trung điểm của BC. Vẽ tia Bx vuông góc với BC (Bx cùng phía với điểm A đối với đường thẳng BC). Qua A vẽ đường thẳng vuông góc với AO cắt Bx ở M. Đường thẳng qua O và song song với AB cắt AM ở D, AC ở F. Đường thẳng MO cắt AB ở E. a) Chứng minh rằng: EF = AO. b) BD cắt CM ở I. Chứng minh rằng: Ba điểm E, I, F thẳng hàng. + Cho tam giác MNP có MN = 5cm, MP = 6cm, NP = 7cm. Gọi I là giao điểm của ba đường phân giác, G là trọng tâm của tam giác MNP. Chứng minh rằng: IG // MP.
Đề HSG cấp huyện Toán 8 năm 2023 - 2024 phòng GDĐT Nam Trực - Nam Định
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 8 đề khảo sát chất lượng học sinh giỏi cấp huyện môn Toán 8 năm học 2023 – 2024 phòng Giáo dục và Đào tạo huyện Nam Trực, tỉnh Nam Định; đề thi có đáp án, lời giải chi tiết và hướng dẫn chấm điểm. Trích dẫn Đề HSG cấp huyện Toán 8 năm 2023 – 2024 phòng GD&ĐT Nam Trực – Nam Định : + Cho tam giác ABC nhọn (AB AC) có đường cao AH và BK cắt nhau tại D. Gọi M là trung điểm của AB P là điểm đối xứng với H qua M. a) Chứng minh AHBP là hình vuông. b) Chứng minh HP MK 2 và BHD AHC. c) Qua D kẻ đường thẳng vuông góc với AH tại D, qua C kẻ đường thẳng vuông góc với BC tại C, hai đường thẳng này cắt nhau tại Q. Chứng minh P K Q thẳng hàng. + Tìm đa thức dư khi chia đa thức P x cho đa thức 2 x 1 biết đa thức P x chia cho x 1 được dư là 4 và khi chia cho 2 x 1 được dư là 3 5 x. Cho x y là các số thực thỏa mãn x y 1. Tìm giá trị nhỏ nhất của biểu thức 2 2 C x y y x xy 4 4 8. + Lấy 2020 điểm thuộc miền trong của một tứ giác để cùng với 4 đỉnh ta được 2024 điểm, trong đó không có 3 điểm nào thẳng hàng. Biết diện tích của tứ giác ban đầu là 1 2 cm. Chứng minh rằng tồn tại một tam giác có 3 đỉnh lấy từ 2024 điểm đã cho có diện tích không vượt quá 1 2 4042 cm.