Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi HK1 Toán 10 năm 2019 - 2020 trường chuyên Thăng Long - Lâm Đồng

Ngày … tháng 12 năm 2019, trường THPT chuyên Thăng Long, thành phố Đà Lạt, tỉnh Lâm Đồng tổ chức kì thi kiểm tra khảo sát chất lượng môn Toán lớp 10 giai đoạn cuối học kì 1 năm học 2019 – 2020. Đề thi HK1 Toán 10 năm 2019 – 2020 trường chuyên Thăng Long – Lâm Đồng mã đề 181 gồm có 4 trang, đề được biên soạn theo dạng trắc nghiệm kết hợp tự luận theo tỉ lệ điểm 70 : 30. phần trắc nghiệm gồm 35 câu, phần tự luận gồm 3 câu, học sinh có 90 phút để hoàn thành bài thi học kì, đề thi có đáp án và lời giải chi tiết. Trích dẫn đề thi HK1 Toán 10 năm 2019 – 2020 trường chuyên Thăng Long – Lâm Đồng : + Cho ba điểm M, N, P bất kỳ thỏa mãn đẳng thức MN = 3MP. Chọn khẳng định sai trong các khẳng định sau: A. Vectơ MN và vectơ PN cùng phương. B. Điểm P nằm giữa hai điểm M và N. C. Ba điểm M, N, P là 3 đỉnh của một tam giác. D. Ba điểm M, N, P thẳng hàng. + Một số tự nhiên có hai chữ số. Nếu lấy số đó trừ đi hai lần tổng các chữ số của nó thì được kết quả là 51. Nếu lấy hai lần chữ số hàng chục cộng với ba lần chữ số hàng đơn vị thì được kết quả là 29. Hỏi số tự nhiên ấy có giá trị thuộc khoảng nào trong các khoảng sau? [ads] + Một cửa hàng buôn giày nhập một đôi giày với giá là 40 đôla. Cửa hàng ước tính rằng nếu đôi giày được bán với giá x đôla thì mỗi tháng khách hàng sẽ mua (120 − x) đôi. Hỏi cửa hàng bán một đôi giày với giá bao nhiêu thì sẽ thu lãi nhiều nhất? + Trong mặt phẳng tọa độ Oxy, cho tam giác ABC có các đỉnh A(−4;1), B(2;4), C(2;-2). a. Chứng minh rằng tam giác ABC cân tại A. b. Tìm tọa độ trực tâm H của tam giác ABC. + Cho đường thẳng d: y = 2x + 2020, đường thẳng d’ song song với đường thẳng d và đi qua điểm M(0;3). Phương trình đường thẳng d’ là?

Nguồn: toanmath.com

Đọc Sách

Đề thi HK1 Toán 10 năm học 2017 - 2018 trường THPT chuyên Trần Phú - Hải Phòng
Đề thi HK1 Toán 10 năm học 2017 – 2018 trường THPT chuyên Trần Phú – Hải Phòng gồm 4 trang với 40 câu trắc nghiệm và 2 câu tự luận, thời gian làm bài 90 phút, đề thi có đáp án và lời giải chi tiết . Trích dẫn đề thi : + Cho phương trình (m^2 – 1)x + m + 1 = 0. Khẳng định nào dưới đây là sai? A. Khi m ≠ ±1, phương trình có nghiệm duy nhất B. Khi m = 1, phương trình có tập nghiệm S = ∅ C. Khi m = -1, phương trình có tập nghiệm S = R D. Khi m = ±1, phương trình vô nghiệm [ads] + Chuẩn bị được nghỉ hè, một lớp có 45 học sinh cùng bàn nhau để cả lớp cùng đi tham quan du lịch. Do sự lựa chọn của các bạn không được tập trung và thống nhất vào một địa điểm nào, Lớp Trưởng đã lấy biểu quyết bằng cách giơ tay. Kết quả, hai lần số bạn chọn đi Tam Đảo thì ít hơn ba lần số bạn chọn đi Hạ Long là 3 bạn và có 9 bạn chọn đi địa điểm khác. Với nguyên tắc số ít hơn phải theo số đông hơn thì họ sẽ tham quan du lịch đến địa điểm là: A. Địa điểm khác B. Tạm hoãn để bàn lại C. Tam Đảo D. Hạ Long + Cho tam giác ABC, tập hợp điểm M thỏa mãn |vtMA + vtBC| = 1/2.|vtMA – vtMB| là: A. Đường trung trực đoạn BC B. Đường tròn tâm I, bán kính R = AB/2 với I là đỉnh hình bình hành ABIC C. Đường thẳng song song với BC D. Đường tròn tâm I, bán kính R = AB/2 với I là đỉnh hình bình hành ABCI
Đề thi HK1 Toán 10 năm học 2017 - 2018 trường THPT Trần Phú - Hà Nội
Đề thi HK1 Toán 10 năm học 2017 – 2018 trường THPT Trần Phú – Hà Nội mã đề 006 gồm 25 câu hỏi trắc nghiệm và 4 bài toán tự luận, thời gian làm bài 90 phút, đề thi có đáp án và lời giải chi tiết  (Lời giải được trình bày bởi thầy Nguyễn Văn Quý). Trích dẫn đề thi : + Cho hệ phương trình: 2x – y + 1 = 0 x^2 – 3xy + y^2 = 2x – 5 + m^2 a. Giải hệ phương trình với m = 0 b. Tìm m để hệ phương trình đã cho có nghiệm [ads] + Cho hàm số y = |x – 3|. Chọn khẳng định đúng trong các khẳng định sau về hàm số: A. Hàm số chẵn B. Hàm số đồng biến trên R C. Giá trị nhỏ nhất của hàm số là y = 0 D. Hàm số nghịch biến trên R + Tìm m để hàm số y = (m – 2)x + 1 là hàm số bậc nhất? Đáp án đúng là: A. m ≠ 0; m ≠ 2   B. m ≠ 2 C. ∀m ∈ R   D. m ≠ 0
Đề thi HK1 Toán 10 năm học 2017 - 2018 trường THPT Lương Thế Vinh - Hà Nội
Đề thi HK1 Toán 10 năm học 2017 – 2018 trường THPT Lương Thế Vinh – Hà Nội gồm 20 câu hỏi trắc nghiệm và 5 bài toán tự luận, thời gian làm bài mỗi phần là 45 phút. Trích dẫn đề thi : + Cho phương trình (x – 2)(2x^2 – 2x + 3m – 1) = 0 (1) với m là tham số thực. a) Tìm m để phương trình (1) nhận x = 3 là một nghiệm. b) Tìm m để phương trình (1) có ba nghiệm phân biệt, trong đó có đúng một nghiệm âm. + Trong mặt phẳng tọa độ Oxy cho tam giác ABC có A(2;2), B(5;3) và C(4;-4). Chứng minh rằng tam giác ABC vuông và tìm tọa độ điểm D sao cho bốn điểm A, B, C, D lập thành một hình chữ nhật. + Cho tam giác ABC có AC = 7 cm, BC = 10 cm và góc BAC = 60 độ. Tính sin ABC và tính độ dài cạnh AB (yêu cầu tính ra kết quả chính xác, không tính xấp xỉ).
Đề thi học kỳ 1 Toán 10 năm học 2017 - 2018 trường THPT chuyên Đại học Sư Phạm Hà Nội
Đề thi học kỳ 1 Toán 10 năm học 2017 – 2018 trường THPT chuyên Đại học Sư Phạm Hà Nội gồm 12 câu hỏi trắc nghiệm và 4 câu tự luận, thời gian làm bài 90 phút. Nổi tiếng với chất lượng dạy – học và bề dày thành tích đã được khẳng định qua các giải thưởng tại các kỳ thi Olympic, các đề kiểm tra, đề thi của ngôi trường THPT chuyên ĐHSP Hà Nội luôn được thầy, cô và học sinh đón đọc, tham khảo và thử sức.