Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi HK1 Toán 11 năm học 2019 - 2020 sở GDĐT Quảng Nam

Thứ Hai ngày 06 tháng 01 năm 2020, sở Giáo dục và Đào tạo tỉnh Quảng Nam tổ chức kiểm tra chất lượng học kỳ 1 môn Toán lớp 11 năm học 2019 – 2020. Đề thi HK1 Toán 11 năm học 2019 – 2020 sở GD&ĐT Quảng Nam mã đề 101 gồm có 02 trang với 15 câu trắc nghiệm và 03 câu tự luận, thời gian học sinh làm bài là 60 phút, đề thi có đáp án và lời giải chi tiết các mã đề 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 111, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124. Trích dẫn đề thi HK1 Toán 11 năm học 2019 – 2020 sở GD&ĐT Quảng Nam : + Trong không gian cho đường thẳng a và mặt phẳng (α) song song với nhau. Phát biểu nào sau đây sai? A. Có duy nhất một mặt phẳng chứa đường thẳng a và song song với (α). B. Trong mặt phẳng (α) có duy nhất một đường thẳng song song với đường thẳng a. C. Nếu một mặt phẳng (β) chứa đường thẳng a và cắt (α) theo giao tuyến b thì b song song với a. D. Trong mặt phẳng (α) có vô số đường thẳng chéo nhau với đường thẳng a. + Một công ty nhận được 50 hồ sơ xin việc của 50 người khác nhau muốn xin việc vào công ty, trong đó có 20 người biết tiếng Anh, 17 người biết tiếng Pháp và 18 người không biết cả tiếng Anh và tiếng Pháp. Công ty cần tuyển 5 người biết ít nhất một thứ tiếng Anh hoặc Pháp. Tính xác suất để trong 5 người được chọn có 3 người biết cả tiếng Anh và tiếng Pháp? [ads] + Cho hình chóp S.ABCD có đáy là hình bình hành, G là trọng tâm tam giác SAD, M là trung điểm của AB. a) Chứng minh AD // (SBC). b) Tìm giao tuyến của hai mặt phẳng (SGM) và (SAC). c) Gọi (α) là mặt phẳng chứa GM và song song với AC, (α) cắt SD tại E. Tính tỉ số SE/SD. + Một thầy giáo có 20 quyển sách khác nhau gồm 7 quyển sách Toán, 5 quyển sách Lí và 8 quyển sách Hóa. Thầy chọn ra 9 quyển sách để tặng cho học sinh. Hỏi thầy giáo đó có bao nhiêu cách chọn sao cho số sách còn lại của thầy có đủ 3 môn? + Một hộp đựng 5 quả cầu đỏ và 8 quả cầu vàng (các quả cầu có bán kính khác nhau). Hỏi có bao nhiêu cách chọn ra 3 quả cầu cùng màu từ hộp trên?

Nguồn: toanmath.com

Đọc Sách

Đề thi học kì 1 (HK1) lớp 11 môn Toán năm 2019 2020 trường THPT Thăng Long TP HCM
Nội dung Đề thi học kì 1 (HK1) lớp 11 môn Toán năm 2019 2020 trường THPT Thăng Long TP HCM Bản PDF Nhằm giúp các em học sinh lớp 11 có tư liệu ôn tập để chuẩn bị cho kỳ thi học kì 1 môn Toán lớp 11, Sytu sưu tầm và chia sẻ đến các em nội dung đề thi + đáp án + lời giải chi tiết đề thi HK1 Toán lớp 11 năm học 2019 – 2020 trường THPT Thăng Long, thành phố Hồ Chí Minh. Trích dẫn đề thi HK1 Toán lớp 11 năm 2019 – 2020 trường THPT Thăng Long – TP HCM : + Cho hình chóp S.ABCD có đáy ABCD là hình bình hành, hai đường chéo AC và BD cắt nhau tại O. Điểm M là trung điểm SA, điểm N thuộc cạnh CD sao cho ND = 3NC. a. Tìm giao tuyến của hai mặt phẳng (SAC) và (SBD). b. Chứng minh rằng đường thẳng SC song song với mặt phẳng (OMN). c. Tìm giao điểm của đường thẳng MN với mặt phẳng (SBD). + Một hộp kín chứa 8 viên bi trắng, 7 viên bi đỏ và 9 viên bi xanh. Lấy ngẫu nhiên 7 viên bi từ hộp kín. Tính xác suất để trong các viên bi lấy ra có đúng 2 viên bi đỏ và 3 viên bi xanh. + Một hộp bóng đèn gồm có 50 chiếc trong đó bao gồm 30 chiếc loại I, 14 chiếc loại II và 6 chiếc loại III. Lấy ngẫu nhiên từ hộp 8 chiếc bóng đèn. Tính xác suất để trong các bóng đèn lấy ra có ít nhất 5 chiếc loại III.
Đề thi học kì 1 (HK1) lớp 11 môn Toán năm 2019 2020 trường THPT Nguyễn Văn Tăng TP HCM
Nội dung Đề thi học kì 1 (HK1) lớp 11 môn Toán năm 2019 2020 trường THPT Nguyễn Văn Tăng TP HCM Bản PDF Nhằm giúp các em học sinh lớp 11 có tư liệu ôn tập để chuẩn bị cho kỳ thi học kì 1 môn Toán lớp 11, Sytu sưu tầm và chia sẻ đến các em nội dung đề thi + đáp án + lời giải chi tiết đề thi HK1 Toán lớp 11 năm học 2019 – 2020 trường THPT Nguyễn Văn Tăng, thành phố Hồ Chí Minh. Trích dẫn đề thi HK1 Toán lớp 11 năm 2019 – 2020 trường THPT Nguyễn Văn Tăng – TP HCM : + Một tổ có 12 bạn, trong đó có 7 bạn nữ. Chọn ngẫu nhiên 3 bạn đi tham gia Rung chuông vàng. Tính xác suất để chọn được một bạn nữ. + Một lớp có 45 em học sinh. Chọn ra 7 em làm ban cán sự lớp trong đó có 1 bạn lớp trưởng, 1 bạn lớp phó, 1 bạn thủ quỹ và 4 bạn tổ trưởng. Hỏi có bao nhiêu cách chọn? + Có bao nhiêu cách sắp xếp 6 cuốn sách Toán và 4 cuốn sách Lý xếp thành một dãy sao cho các cuốn sách cùng môn xếp cạnh nhau.
Đề thi học kì 1 (HK1) lớp 11 môn Toán năm 2019 2020 trường THPT Thủ Thiêm TP HCM
Nội dung Đề thi học kì 1 (HK1) lớp 11 môn Toán năm 2019 2020 trường THPT Thủ Thiêm TP HCM Bản PDF Nhằm giúp các em học sinh lớp 11 có tư liệu ôn tập để chuẩn bị cho kỳ thi học kì 1 môn Toán lớp 11, Sytu sưu tầm và chia sẻ đến các em nội dung đề thi + đáp án + lời giải chi tiết đề thi HK1 Toán lớp 11 năm học 2019 – 2020 trường THPT Thủ Thiêm, thành phố Hồ Chí Minh. Trích dẫn đề thi HK1 Toán lớp 11 năm 2019 – 2020 trường THPT Thủ Thiêm – TP HCM : + Một hộp đựng 4 viên bi đỏ, 6 viên bi xanh và 5 viên bi vàng. Người ta chọn 4 viên bi từ hộp đó. Hỏi có bao nhiêu cách chọn để 4 viên bi lấy ra không có đủ cả 3 màu. + Cho hình chóp SABC. I, J lần lượt là trung điểm của AB, BC và M là điểm trên cạnh SC. Tìm giao tuyến của (SAC) với (IJM). + Cho hình chóp S.ABCD có đáy ABCD là hình bình hành. Gọi M, N, P lần lượt là trung điểm của các cạnh AB, AD và SB. Tìm giao điểm của mặt phẳng (MNP) với SD.
Đề thi học kì 1 (HK1) lớp 11 môn Toán năm 2019 2020 trường THPT An Dương Vương TP HCM
Nội dung Đề thi học kì 1 (HK1) lớp 11 môn Toán năm 2019 2020 trường THPT An Dương Vương TP HCM Bản PDF Nhằm giúp các em học sinh lớp 11 có tư liệu ôn tập để chuẩn bị cho kỳ thi học kì 1 môn Toán lớp 11, Sytu sưu tầm và chia sẻ đến các em nội dung đề thi + đáp án + lời giải chi tiết đề thi HK1 Toán lớp 11 năm học 2019 – 2020 trường THPT An Dương Vương, thành phố Hồ Chí Minh. Trích dẫn đề thi HK1 Toán lớp 11 năm 2019 – 2020 trường THPT An Dương Vương – TP HCM : + Một hộp chứa 5 quả cầu đen và 4 quả cầu trắng (tất cả các quả cầu đều khác nhau). Lấy ngẫu nhiên đồng thời 3 quả. Tính xác suất để được 3 quả có đủ hai màu. + Hai đường thẳng a và b cắt nhau tại điểm O. Trên đường thẳng a, lấy 8 điểm khác nhau (không tính điểm O). Trên đường thẳng b, lấy 10 điểm khác nhau (không tính điểm O). Tính số tam giác có 3 đỉnh được lấy từ 19 điểm bao gồm 18 điểm ở trên và điểm O. + Cho ba số thực dương a, b, c là ba số hạng liên tiếp của một cấp số nhân đồng thời thỏa mãn điều kiện a2b2c2/(a3 + b3 + c3) = 4. Tính giá trị của biểu thức P = 1/a3 + 1/b3 + 1/c3.