Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Chuyên đề biến đổi đại số ôn thi vào

Nội dung Chuyên đề biến đổi đại số ôn thi vào Bản PDF - Nội dung bài viết Tài liệu ôn thi môn Toán lớp 9 - Chuyên đề biến đổi đại số Tài liệu ôn thi môn Toán lớp 9 - Chuyên đề biến đổi đại số Tài liệu này bao gồm 31 trang, cung cấp hướng dẫn phương pháp giải và tuyển chọn các bài tập chuyên đề biến đổi đại số. Mỗi bài tập đều có đáp án và lời giải chi tiết, giúp học sinh lớp 9 ôn tập chuẩn bị cho kỳ thi tuyển sinh vào lớp 10 môn Toán. Các bài toán được lựa chọn từ các nguồn đáng tin cậy, đảm bảo chất lượng và phong phú cho việc ôn tập của học sinh.

Nguồn: sytu.vn

Đọc Sách

Chuyên đề góc với đường tròn ôn thi vào lớp 10
Tài liệu gồm 22 trang, hướng dẫn phương pháp giải và tuyển chọn các bài tập chuyên đề góc với đường tròn, có đáp án và lời giải chi tiết, giúp học sinh lớp 9 ôn tập chuẩn bị cho kì thi tuyển sinh vào lớp 10 môn Toán; các bài toán trong tài liệu được trích từ các đề thi tuyển sinh lớp 10 môn Toán của các sở GD&ĐT và các trường THPT chuyên trên toàn quốc. KIẾN THỨC CƠ BẢN Góc ABE có đỉnh A nằm trên đường tròn O và các cạnh cắt đường tròn đó được gọi là góc nội tiếp. Trong trường hợp các góc nội tiếp có số đo không vượt quá 90 thì số đo của chúng bằng nửa số đo của góc ở tâm, cùng chắn một cung. Các góc nội tiếp đều có số đo bằng nửa số đo cung bị chắn. Vì thế, nếu những góc này cùng chắn một cung (hoặc chắn những cung bằng nhau) thì chúng bằng nhau, nếu các góc nội tiếp này bằng nhau thì các cung bị chắn bằng nhau. Cho đường tròn O và dây cung AB. Từ điểm A ta kẻ tiếp tuyến Ax với đường tròn, khi đó BAx được gọi là góc tạo bởi tia tiếp tuyến với dây cung AB. Cũng như góc nội tiếp, số đo góc giữa tia tiếp tuyến và dây cung bằng nửa số đo cung bị chắn. Chú ý: Việc nắm chắc các khái niệm, định lý, hệ quả về góc nội tiếp, góc tạo bởi tia tiếp tuyến và dây cung có thể giúp chúng ta so sánh số đo các góc, từ đó chứng minh được các đường thẳng song song với nhau, các tam giác bằng nhau, các tam giác đồng dạng với nhau. GÓC NỘI TIẾP ĐƯỜNG TRÒN Hai góc cùng chắn một cung thì bằng nhau và bằng nửa số đo cung bị chắn. Các góc chắn hai cung bằng nhau thì bằng nhau. GÓC TẠO BỞI TIA TIẾP TUYẾN VÀ DÂY CUNG Số đo góc tạo bởi tia tiếp tuyến và dây cung (tại một điểm trên đường tròn) bằng nửa số đo cung bị chắn. GÓC CÓ ĐỈNH Ở TRONG HOẶC NGOÀI ĐƯỜNG TRÒN Với đỉnh A nằm trong đường tròn O ta có góc với đỉnh ở trong đường tròn (hình). Số đo của góc này bằng nửa tổng số đo hai cung bị chắn giữa hai cạnh của góc và các tia đối của hai cạnh đó. Với đỉnh A nằm ở ngoài đường tròn O ta có số đo góc nằm ngoài đường tròn bằng nửa hiệu số đo hai cung bị chắn. ÁP DỤNG GÓC CÓ ĐỈNH Ở TRONG HOẶC NGOÀI ĐƯỜNG TRÒN Cũng như phần góc nội tiếp, góc tạo bởi tia tiếp tuyến và dây cung, các định lý và hệ quả của góc có đỉnh nằm trong hoặc nằm ngoài đường tròn giúp chúng ta tìm mối quan hệ giữa các số đo các góc, chứng minh các đường song song, các tam giác bằng nhau, các tam giác đồng dạng với nhau, hai đường thẳng vuông góc với nhau. ÁP DỤNG GIẢI CÁC BÀI TOÁN VỀ QUỸ TÍCH VÀ DỰNG HÌNH Khái niệm cung chứa góc giúp chúng ta giải được nhiều bài toán quỹ tích, dựng hình, chứng minh nhiều điểm cùng thuộc một đường tròn.
Chuyên đề đường tròn ôn thi vào lớp 10
Tài liệu gồm 26 trang, hướng dẫn phương pháp giải và tuyển chọn các bài tập chuyên đề đường tròn, có đáp án và lời giải chi tiết, giúp học sinh lớp 9 ôn tập chuẩn bị cho kì thi tuyển sinh vào lớp 10 môn Toán; các bài toán trong tài liệu được trích từ các đề thi tuyển sinh lớp 10 môn Toán của các sở GD&ĐT và các trường THPT chuyên trên toàn quốc. SỰ XÁC ĐỊNH CỦA ĐƯỜNG TRÒN Định nghĩa: Đường tròn tâm O bán kính R 0 là hình gồm các điểm cách điểm O một khoảng R kí hiệu là (O;R) hay (O). + Đường tròn đi qua các điểm A A … A 1 2 n gọi là đường tròn ngoại tiếp đa giác A A … A 1 2 n. + Đường tròn tiếp xúc với tất cả các cạnh của đa giác A A … A 1 2 n gọi là đường tròn nội tiếp đa giác đó. Những tính chất đặc biệt cần nhớ: + Trong tam giác vuông trung điểm cạnh huyền là tâm vòng tròn ngoại tiếp. + Trong tam giác đều tâm vòng tròn ngoại tiếp là trọng tâm tam giác đó. + Trong tam giác thường: Tâm vòng tròn ngoại tiếp là giao điểm của 3 đường trung trực của 3 cạnh tam giác đó. Tâm vòng tròn nội tiếp là giao điểm 3 đường phân giác trong của tam giác đó. PHƯƠNG PHÁP: Để chứng minh các điểm A A … A 1 2 n cùng thuộc một đường tròn ta chứng minh các điểm A A … A 1 2 n cách đều điểm O cho trước. VỊ TRÍ TƯƠNG ĐỐI CỦA ĐƯỜNG THẲNG VÀ ĐƯỜNG TRÒN 1. Khi một đường thẳng có hai điểm chung A B với đường tròn (O) ta nói đường thẳng cắt đường tròn tại hai điểm phân biệt. Khi đó ta có những kết quả quan trọng sau: Nếu M nằm ngoài đoạn AB thì MA MB MO R 2 2; Nếu M nằm trong đoạn AB thì MA MB R MO 2 2. Mối liên hệ khoảng cách và dây cung: 2 2 2 AB R OH 4. 2. Khi một đường thẳng chỉ có một điểm chung H với đường tròn (O) ta nói đường thẳng tiếp xúc với đường tròn, hay là tiếp tuyến của đường tròn (O). Điểm H gọi là tiếp điểm của tiếp tuyến với đường tròn (O). Như vậy nếu là tiếp tuyến của (O) thì vuông góc với bán kính đi qua tiếp điểm. Nếu hai tiếp tuyến của đường tròn cắt nhau tại một điểm thì: + Điểm đó cách đều hai tiếp điểm. + Tia kẻ từ điểm đó đến tâm O là tia phân giác góc tạo bởi 2 tiếp tuyến. + Tia kẻ từ tâm đi qua điểm đó là tia phân giác góc tạo bởi hai bán kính đi qua các tiếp điểm. + Tia kẻ từ tâm đi qua điểm đó thì vuông góc với đoạn thẳng nối hai tiếp điểm tại trung điểm của đoạn thẳng đó. 3. Khi một đường thẳng và đường tròn (O) không có điểm chung ta nói đường thẳng và đường tròn (O) không giao nhau. Khi đó OH R. 4. Đường tròn tiếp xúc với 3 cạnh tam giác là đường tròn nội tiếp tam giác. Đường tròn nội tiếp có tâm là giao điểm 3 đường phân giác trong của tam giác. 5. Đường tròn tiếp xúc với một cạnh của tam giác và phần kéo dài hai cạnh kia gọi là đường tròn bàng tiếp tam giác. Tâm đường tròn bàng tiếp tam giác trong góc A là giao điểm của hai đường phân giác ngoài góc B và góc C. Mỗi tam giác có 3 đường tròn bàng tiếp. VỊ TRÍ TƯƠNG ĐỐI CỦA HAI ĐƯỜNG TRÒN Xét hai đường tròn (O;R) và (O’;R’): A. Hai đường tròn tiếp xúc nhau: Khi hai đường tròn tiếp xúc nhau thì có thể xảy ra 2 khả năng: Hai đường tròn tiếp xúc ngoài; Hai đường tròn tiếp xúc trong. B. Hai đường tròn cắt nhau: Khi hai đường tròn 1 2 O O cắt nhau theo dây AB thì O O AB 1 2 tại trung điểm H của AB. Hay AB là đường trung trực của O O1 2. Khi giải toán liên quan dây cung của đường tròn, hoặc cát tuyến ta cần chú ý kẻ thêm đường phụ là đường vuông góc từ tâm đến các dây cung.
Chuyên đề hệ thức lượng trong tam giác vuông ôn thi vào lớp 10
Tài liệu gồm 17 trang, hướng dẫn phương pháp giải và tuyển chọn các bài tập chuyên đề hệ thức lượng trong tam giác vuông, có đáp án và lời giải chi tiết, giúp học sinh lớp 9 ôn tập chuẩn bị cho kì thi tuyển sinh vào lớp 10 môn Toán; các bài toán trong tài liệu được trích từ các đề thi tuyển sinh lớp 10 môn Toán của các sở GD&ĐT và các trường THPT chuyên trên toàn quốc. Hệ thức về cạnh và đường cao Khi giải các bài toán liên quan đến cạnh và đường cao trong tam giác vuông, ngoài việc nắm vững các kiến thức về định lý Talet, về các trường hợp đồng dạng của tam giác, cần phải nắm vững các kiến thức sau: Tam giác ABC vuông tại A, đường cao AH. Chú ý: Diện tích tam giác vuông: 1 2 S ab. Tỉ số lượng giác của góc nhọn 1. Các tỉ số lượng giác của góc nhọn (hình) được định nghĩa như sau: sin cos tan cot AB AC AB AC BC BC AC AB. + Nếu là một góc nhọn thì 0 sin 1 0 cos 1 tan 0 cot 0. 2. Với hai góc mà 0 90 ta có: sin cos cos sin tan cot cot tan. Nếu hai góc nhọn và có sin sin hoặc cos cos thì 3 2 2 sin cos 1 cot 1 tg g. 4. Với một số góc đặc biệt ta có: 0 0 0 0 1 2 sin 30 cos 60 sin 45 cos 45 2 2 0 0 0 0 3 1 cos 30 sin 60 cot60 tan 30 2 3 0 0 0 0 tan 45 cot 45 1 cot 30 tan 60 3. Hệ thức về cạnh và góc trong tam giác vuông 1. Trong một tam giác vuông, mỗi cạnh góc vuông bằng: a) Cạnh huyền nhân với sin góc đối hay nhân với cosin góc kề. b) Cạnh góc vuông kia nhân với tan của góc đối hay nhân với cot của góc kề. 2. Giải tam giác vuông là tìm tất cả các cạnh và các góc chưa biết của tam giác vuông đó.
Chuyên đề bất đẳng thức ôn thi vào lớp 10
Tài liệu gồm 109 trang, hướng dẫn phương pháp giải và tuyển chọn các bài tập chuyên đề bất đẳng thức, có đáp án và lời giải chi tiết, giúp học sinh lớp 9 ôn tập chuẩn bị cho kì thi tuyển sinh vào lớp 10 môn Toán; các bài toán trong tài liệu được trích từ các đề thi tuyển sinh lớp 10 môn Toán của các sở GD&ĐT và các trường THPT chuyên trên toàn quốc. BẤT ĐẲNG THỨC CAUCHY (CÔ SI) Cho các số thực không âm abc khi đó ta có: 1. a b ab 2. Dấu đẳng thức xảy ra khi và chỉ khi a b. 2. 3 a b c abc 3. Dấu đẳng thức xảy ra khi và chỉ khi abc. Các bất đẳng thức 1 và 2 gọi là bất đẳng thức Cauchy cho 2 và 3 số thực không âm (còn gọi là bất đẳng thức Cô si hay bất đẳng thức AM – GM). Một số kỹ thuật vận dụng bất đẳng thức Cô-si: 1. Dự đoán dấu bằng để phân tích số hạng và vận dụng bất đẳng thức Cô si. 2. Kỹ thuật ghép đối xứng. 3. Kỹ thuật cô si ngược dấu. 4. Phương pháp đặt ẩn phụ. BẤT ĐẲNG THỨC SCHUR Cho xyz là các số thực không âm và số thực dương t. Khi đó ta có: xx yx z yy zy x zz yz x. Đây là bất đẳng thức có khá nhiều ứng dụng và tương đối chặt nhiều bài toán BĐT chỉ là hệ quả của BĐT này. BẤT ĐẲNG THỨC ABEL Cho hai dãy số thực: 1 2 n aa a và 123 n bbb b. Đặt 1 2 … k k S aa a với k n 1 2 3 và m SS S M SS S min max. Khi đó ta có: 1 11 2 2 1 A a b a b a b Mb n n. BẤT ĐẲNG THỨC BUNHIACOPXKI 1. Những kỹ năng vận dụng cơ bản. 2. Kỹ thuật tách ghép. 3. Kỹ thuật thêm bớt. 4. Phương pháp đặt ẩn phụ.