Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Tài liệu tự học Toán 7 - Nguyễn Chín Em

THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh tài liệu tự học Toán 7 do thầy Nguyễn Chín Em sưu tầm và biên soạn; tài liệu gồm 381 trang trình bày đầy đủ lý thuyết SGK, phân dạng toán và hướng dẫn giải các bài toán Đại số và Hình học lớp 7. Khái quát nội dung tài liệu tự học Toán 7 – Nguyễn Chín Em: PHẦN I . ĐẠI SỐ. CHƯƠNG 1 . SỐ HỮU TỈ. SỐ THỰC. 1 TẬP HỢP R CÁC SỐ HỮU TỈ. + Dạng 1. Biểu diễn số hữu tỉ. + Dạng 2. So sánh hai số hữu tỉ. 2 CỘNG, TRỪ SỐ HỮU TỈ. + Dạng 1. Cộng, trừ số hữu tỉ. + Dạng 2. Mở đầu về phương trình. + Dạng 3. Biểu diễn một số hữu tỉ thành tổng hoặc hiệu của các số hữu tỉ khác. 3 NHÂN, CHIA SỐ HỮU TỈ. 4 GIÁ TRỊ TUYỆT ĐỐI CỦA MỘT SỐ HỮU TỈ. CỘNG, TRỪ, NHÂN, CHIA SỐ THẬP PHÂN. 5 LŨY THỪA CỦA MỘT SỐ HỮU TỈ. 6 TỈ LỆ THỨC. 7 SỐ THẬP PHÂN HỮU HẠN. SỐ THẬP PHÂN VÔ HẠN TUẦN HOÀN. LÀM TRÒN SỐ. 8 SỐ VÔ TỈ. KHÁI NIỆM VỀ CĂN BẬC HAI. CHƯƠNG 2 . HÀM SỐ VÀ ĐỒ THỊ. 1 ĐẠI LƯỢNG TỈ LỆ THUẬN. MỘT SỐ BÀI TOÁN VỀ ĐẠI LƯỢNG TỈ LỆ THUẬN. + Dạng 1. Sử dụng định nghĩa và tính chất của đại lượng tỉ lệ thuận để giải toán. + Dạng 2. Một số bài toán về đại lượng tỉ lệ thuận. 2 ĐẠI LƯỢNG TỈ LỆ NGHỊCH. MỘT SỐ BÀI TOÁN VỀ ĐẠI LƯỢNG TỈ LỆ NGHỊCH. + Dạng 1. Sử dụng định nghĩa và tính chất của đại lượng tỉ lệ nghịch để giải toán. + Dạng 2. Một số bài toán về đại lượng tỉ lệ nghịch. 3 HÀM SỐ. 4 MẶT PHẲNG TỌA ĐỘ. 5 ĐỒ THỊ HÀM SỐ y = ax VỚI a ≠ 0. CHƯƠNG 3 . THỐNG KÊ. 1 THU THẬP SỐ LIỆU THỐNG KÊ. 2 BẢNG TẦN SỐ CÁC GIÁ TRỊ CỦA DẤU HIỆU. 3 BIỂU ĐỒ. 4 SỐ TRUNG BÌNH CỘNG. CHƯƠNG 4 . BIỂU THỨC ĐẠI SỐ. 1 KHÁI NIỆM VỀ BIỂU THỨC ĐẠI SỐ. 2 GIÁ TRỊ CỦA MỘT BIỂU THỨC ĐẠI SỐ. 3 ĐƠN THỨC. 4 ĐƠN THỨC ĐỒNG DẠNG. 5 ĐA THỨC. + Dạng 1. Nhận biết đa thức. + Dạng 2. Thu gọn đa thức. + Dạng 3. Tìm bậc của đa thức. 6 CỘNG TRỪ ĐA THỨC. + Dạng 1. Tính tổng, hiệu của hai đa thức. + Dạng 2. Tìm đa thức thỏa mãn đẳng thức. + Dạng 3. Bài toán liên quan đến chia hết. 7 ĐA THỨC MỘT BIẾN. 8 CỘNG, TRỪ ĐA THỨC MỘT BIẾN. 9 NGHIỆM CỦA ĐA THỨC MỘT BIẾN. [ads] PHẦN II . HÌNH HỌC. CHƯƠNG 1 . ĐƯỜNG THẲNG VUÔNG GÓCĐƯỜNG THẲNG SONG SONG. 1 HAI GÓC ĐỐI ĐỈNH. 2 HAI ĐƯỜNG THẲNG VUÔNG GÓC. 3 CÁC GÓC TẠO BỞI MỘT ĐƯỜNG THẲNG CẮT HAI ĐƯỜNG THẲNG. + Góc so le trong. Góc đồng vị. + Tính chất. 4 HAI ĐƯỜNG THẲNG SONG SONG. 5 TỪ VUÔNG GÓC ĐẾN SONG SONG. CHƯƠNG 2 . TAM GIÁC. 1 TỔNG BA GÓC CỦA MỘT TAM GIÁC. + Giải bài toán định lượng. + Bài tập luyện tập. 2 HAI TAM GIÁC BẰNG NHAU. 3 HAI TAM GIÁC BẰNG NHAU CẠNH – CẠNH – CẠNH. + Dạng 1. Chứng minh hai tam giác bằng nhau. + Dạng 2. Sử dụng hai tam giác bằng nhau để giải toán. + Dạng 3. Vẽ tam giác ABC biết AB = c, BC = a, AC = b. 4 HAI TAM GIÁC BẰNG NHAU CẠNH – GÓC – CẠNH. + Dạng 1. Chứng minh hai tam giác bằng nhau. + Dạng 2. Vẽ tam giác ABC biết AB = c, AC = b và góc BAC = α. 5 HAI TAM GIÁC BẰNG NHAU GÓC – CẠNH – GÓC. + Dạng 1. Chứng minh hai tam giác bằng nhau. + Dạng 2. Sử dụng hai tam giác bằng nhau để giải toán. + Dạng 3. Vẽ tam giác ABC biết AB = c, A = α, B = β. 6 TAM GIÁC CÂN. + Dạng 1. Chứng minh tính chất của tam giác cân, tam giác đều. + Dạng 2. Chứng minh một tam giác là tam giác cân, tam giác đều. + Dạng 3. Sử dụng tam giác cân, tam giác đều để giải toán định lượng. + Dạng 4. Sử dụng tam giác cân giải bài toán định tính. 7 ĐỊNH LÍ PY – TA – GO. 8 CÁC TRƯỜNG HỢP BẰNG NHAU CỦA TAM GIÁC VUÔNG. CHƯƠNG 3 . QUAN HỆ GIỮA CÁC YẾU TỐ TRONG TAM GIÁC.CÁC ĐƯỜNG ĐỒNG QUY CỦA TAM GIÁC. 1 QUAN HỆ GIỮA GÓC VÀ CẠNH ĐỐI DIỆN TRONG MỘT TAM GIÁC. + Dạng 1. Chứng minh các tính chất về mối quan hệ giữa góc và cạnh đối diện trong một tam giác. + Dạng 2. Sử dụng tính chất về mối quan hệ giữa góc và cạnh đối diện trong một tam giác giải toán. 2 QUAN HỆ GIỮA ĐƯỜNG VUÔNG GÓC VÀ ĐƯỜNG XIÊN, ĐƯỜNG XIÊN VÀ HÌNH CHIẾU. + Dạng 1. Chứng minh các tính chất về mối quan hệ giữa các đường xiên và các hình chiếu của chúng. + Dạng 2. Sử dụng tính chất về mối quan hệ giữa các đường xiên và các hình chiếu của chúng giải toán. 3 QUAN HỆ GIỮA BA CẠNH CỦA MỘT TAM GIÁC – BẤT ĐẲNG THỨC TAM GIÁC. + Dạng 1. Chứng minh bất đẳng thức tam giác. + Dạng 2. Sử dụng bất đẳng thức tam giác để giải toán. 4 TÍNH CHẤT BA ĐƯỜNG TRUNG TUYẾN CỦA TAM GIÁC. + Dạng 1. Tính độ dài đoạn thẳng. + Dạng 2. Chứng minh tính chất hình học. 5 TÍNH CHẤT TIA PHÂN GIÁC CỦA MỘT GÓC. + Dạng 1. Chứng minh tính chất tia phân giác của một góc. + Dạng 2. Chứng minh một tia là tia phân giác của một góc. + Dạng 3. Dựng tia phân giác của một góc. + Dạng 4. Sử dụng tính chất tia phân giác của một góc để giải toán. 6 TÍNH CHẤT BA ĐƯỜNG PHÂN GIÁC CỦA TAM GIÁC. 7 TÍNH CHẤT ĐƯỜNG TRUNG TRỰC CỦA MỘT ĐOẠN THẲNG. + Dạng 1. Chứng minh tính chất đường trung trực. + Dạng 2. Sử dụng tính chất đường trung trực để giải toán. 8 TÍNH CHẤT BA ĐƯỜNG TRUNG TRỰC CỦA TAM GIÁC. + Dạng 1. Chứng minh tính chất ba đường trung trực của tam giác. + Dạng 2. Sử dụng tính chất của ba đường trung trực của tam giác để giải toán. 9 TÍNH CHẤT BA ĐƯỜNG CAO CỦA TAM GIÁC.

Nguồn: toanmath.com

Đọc Sách

Chuyên đề hình hộp chữ nhật và hình lập phương Toán 7
Tài liệu gồm 27 trang, bao gồm tóm tắt lí thuyết và hướng dẫn giải các dạng bài tập chuyên đề hình hộp chữ nhật và hình lập phương trong chương trình môn Toán 7. PHẦN I . TÓM TẮT LÍ THUYẾT. PHẦN II . CÁC DẠNG BÀI. Dạng 1. Một số yếu tố cơ bản, diện tích xung quanh, diện tích toàn phần của hình hộp chữ nhật và hình lập phương. + Nhận dạng hình, xác định được các yếu tố liên quan của hình hộp chữ nhật và hình lập phương. + Viết các công thức liên quan (công thức tính diện tích xung quanh và diện tích toàn phần của hình hộp chữ nhật và hình lập phương). + Thay số, tính và kết luận. Dạng 2. Thể tích của hình hộp chữ nhật và hình lập phương. + Áp dụng các công thức tính thể tích của hình hộp chữ nhật và hình lập phương. + Áp dụng giải các bài toán thực tế có liên quan. PHẦN III . BÀI TẬP TỰ LUYỆN.
Chuyên đề sự đồng quy của ba đường trung trực, ba đường cao trong một tam giác Toán 7
Tài liệu gồm 63 trang, bao gồm tóm tắt lí thuyết và hướng dẫn giải các dạng bài tập chuyên đề sự đồng quy của ba đường trung trực, ba đường cao trong một tam giác trong chương trình môn Toán 7. PHẦN I . TÓM TẮT LÍ THUYẾT. PHẦN II . CÁC DẠNG BÀI. BA ĐƯỜNG TRUNG TRỰC Dạng 1. Xác định tâm đường tròn ngoại tiếp tam giác. – Dựa vào định nghĩa và sự đồng quy của ba đường trung trực trong tam giác. – Sử dụng tính chất giao điểm các đường trung trực trong tam giác thì cách đều ba đỉnh của tam giác đó. Dạng 2. Chứng minh ba đường thẳng đồng quy, ba điểm thẳng hàng. – Dựa vào định lí, tính chất về đường trung trực và sự đồng quy của ba đường trung trực trong tam giác. Dạng 3. Vận dụng tính chất ba đường trung trực trong tam giác để giải quyết các bài toán khác. – Dựa vào tính chất về đường trung trực và sự đồng quy của ba đường trung trực trong tam giác. BA ĐƯỜNG CAO Dạng 1. Xác định trực tâm của một tam giác. – Để xác định trực tâm của một tam giác, ta cần tìm giao điểm hai đường cao của tam giác đó. – Dựa vào định nghĩa, định lí và nhận xét, tính chất về đường cao và sự đồng quy của ba đường cao trong tam giác. Dạng 2. Sử dụng tính chất trực tâm của tam giác để chứng minh hai đường thẳng vuông góc, ba đường thẳng đồng quy. – Nếu H là giao điểm hai đường cao kẻ từ B và C của tam giác ABC thì AH ⊥ BC. – Nếu ba đường thẳng là ba đường cao của một tam giác thì chúng cùng đi qua một điểm. Dạng 3. Vận dụng tính chất ba đường cao trong tam giác để giải quyết các bài toán khác. – Dựa vào định lí, tính chất về sự đồng quy của ba đường cao trong tam giác. PHẦN III . BÀI TẬP TỰ LUYỆN.
Chuyên đề sự đồng quy của ba trung tuyến, ba đường phân giác trong một tam giác Toán 7
Tài liệu gồm 56 trang, bao gồm tóm tắt lí thuyết và hướng dẫn giải các dạng bài tập chuyên đề sự đồng quy của ba trung tuyến, ba đường phân giác trong một tam giác trong chương trình môn Toán 7. CHUYÊN ĐỀ 1 . SỰ ĐỒNG QUY CỦA BA ĐƯỜNG TRUNG TUYẾN TRONG MỘT TAM GIÁC. PHẦN I. TÓM TẮT LÍ THUYẾT. PHẦN II. CÁC DẠNG BÀI. Dạng 1. Sử dụng tính chất trọng tâm của tam giác. – Sử dụng linh hoạt các tỉ số liên quan đến trọng tâm tam giác. Dạng 2. Chứng minh một điểm là trọng tâm của tam giác. – Để chứng minh một điểm là trọng tâm của tam giác, ta có thể dùng một trong hai cách sau: + Chứng minh điểm đó là giao điểm của hai đường trung tuyến trong tam giác. + Chứng minh điểm đó thuộc một đường trung tuyến của tam giác và thỏa mãn một trong các tỉ lệ về tính chất trọng tâm của tam giác. Dạng 3. Vấn đề đường trung tuyến trong tam giác vuông, tam giác cân, tam giác đều. – Chú ý những tính chất của tam giác vuông, tam giác cân, tam giác đều. PHẦN III. BÀI TẬP TỰ LUYỆN. CHUYÊN ĐỀ 2 . SỰ ĐỒNG QUY CỦA BA ĐƯỜNG PHÂN GIÁC TRONG MỘT TAM GIÁC. PHẦN I. TÓM TẮT LÍ THUYẾT. PHẦN II. CÁC DẠNG BÀI. Dạng 1. Chứng minh đoạn thẳng bằng nhau, góc bằng nhau, tính độ dài đoạn thẳng, số đo góc. – Sử dụng các tính chất: + Giao điểm của hai đường phân giác của hai góc trong tam giác nằm trên đường phân giác của góc thứ ba. + Giao điểm của các đường phân giác của một tam giác cách đều ba cạnh của tam giác. + Tổng ba góc trong một tam giác bằng 180 độ. Dạng 2. Chứng minh ba đường đồng quy, ba điểm thẳng hàng. – Sử dụng các tính chất: + Giao điểm của hai đường phân giác của hai góc trong tam giác nằm trên đường phân giác của góc thứ ba. + Giao điểm của các đường phân giác của một tam giác cách đều ba cạnh của tam giác. Dạng 3. Đường phân giác đối với tam giác đặc biệt (tam giác cân, tam giác đều). – Sử dụng tính chất: trong tam giác cân, đường phân giác của góc ở đỉnh cũng đồng thời là đường trung tuyến, đường cao. Dạng 4. Chứng minh mối quan hệ giữa các góc. – Vận dụng các tính chất tia phân giác của một góc để tìm mối liên hệ giữa các góc. – Dùng định lí tổng ba góc trong một tam giác bằng 180 độ. PHẦN III. BÀI TẬP TỰ LUYỆN.
Chuyên đề quan hệ giữa ba cạnh của một tam giác Toán 7
Tài liệu gồm 18 trang, bao gồm tóm tắt lí thuyết và hướng dẫn giải các dạng bài tập chuyên đề quan hệ giữa ba cạnh của một tam giác trong chương trình môn Toán 7. PHẦN I . TÓM TẮT LÍ THUYẾT. PHẦN II . CÁC DẠNG BÀI. Dạng 1 . Khẳng định có tồn tại hay không một tam giác biết độ dài ba cạnh. + Tồn tại một tam giác có độ dài ba cạnh là abc nếu: a b c b a c c a b hoặc b c a b c. + Trong trường hợp xác định được a là số lớn nhất trong ba số abc thì điều kiện để tồn tại tam giác chỉ cần: a b c. Dạng 2 . Chứng minh các bất đẳng thức về độ dài. Sử dụng bất đẳng thức tam giác và các biến đổi về bất đẳng thức tam giác. + Cộng cùng một số vào hai vế của bất đẳng thức: a b a c b c. + Cộng từng vế hai bất đẳng thức cùng chiều: a b a c b. PHẦN III . BÀI TẬP TỰ LUYỆN.