Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề kiểm tra CLB Toán 7 năm 2023 - 2024 trường THCS Cầu Giấy - Hà Nội

THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 7 đề kiểm tra CLB Văn Hóa môn Toán 7 năm học 2023 – 2024 trường THCS Cầu Giấy, quận Cầu Giấy, thành phố Hà Nội; kỳ thi được diễn ra vào ngày 13 tháng 09 năm 2023; đề thi có đáp án, lời giải chi tiết và thang chấm điểm. Trích dẫn Đề kiểm tra CLB Toán 7 năm 2023 – 2024 trường THCS Cầu Giấy – Hà Nội : + Trên một mặt phẳng cho 8 điểm phân biệt, trong đó có 5 điểm thẳng hàng. Cứ nối 3 điểm phân biệt không thẳng hàng sẽ tạo thành một tam giác, hỏi có bao nhiêu tam giác được tạo thành khi nối các điểm từ 8 điểm trên. + Cho một đường tròn, trên đường tròn lấy 2023 chấm đỏ và 2024 chấm xanh. Người ta viết số 1 vào giữa hai chấm đỏ, viết số –1 vào giữa hai chấm xanh, và viết số 0 vào giữa hai chấm khác màu. Hỏi tổng các số trên đường tròn bằng bao nhiêu? + Cho k là một số tự nhiên khác 0, chứng minh rằng tồn tại số tự nhiên có dạng 1011 1 k chia hết cho 2023.

Nguồn: toanmath.com

Đọc Sách

Đề học sinh giỏi huyện Toán 7 năm 2021 - 2022 phòng GDĐT Tiền Hải - Thái Bình
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 7 đề khảo sát học sinh giỏi cấp huyện môn Toán 7 năm học 2021 – 2022 phòng Giáo dục và Đào tạo UBND huyện Tiền Hải, tỉnh Thái Bình; đề thi có đáp án, lời giải chi tiết và hướng dẫn chấm điểm. Trích dẫn đề học sinh giỏi huyện Toán 7 năm 2021 – 2022 phòng GD&ĐT Tiền Hải – Thái Bình : + Tìm 3 phân số có tổng bằng 9 9 70 biết các tử số tỉ lệ theo 3:4:5 và các mẫu số tương ứng tỉ lệ theo 5:1:2. + Cho tam giác ABC cân tại A có ba góc đều nhọn. Về phía ngoài tam giác vẽ tam giác ABE vuông cân tại B. Kẻ đường cao AH (H thuộc BC), trên tia đối của tia AH lấy điểm I sao cho AI = BC. 1) Chứng minh: Hai tam giác ABI và BEC bằng nhau. 2) Chứng minh: BI vuông góc với CE. 3) Phân giác của góc ABC cắt cạnh AC tại D, phân giác của góc BDC cắt cạnh BC tại M. Phân giác góc BDA cắt đường thẳng BC tại N. Chứng minh: BD 1 MN 2. + Cho 2022 số a1, a2, a3, ……., a2021, a2022 là các số tự nhiên khác 0 thỏa mãn: 1 2 3 2021 2022 111 1 1 aaa a a. Chứng minh rằng: Tồn tại ít nhất một số trong 2022 số đã cho là số chẵn.
Đề HSG Toán 7 năm 2021 - 2022 phòng GDĐT thành phố Vinh - Nghệ An
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 7 đề thi khảo sát chất lượng học sinh giỏi môn Toán 7 năm học 2021 – 2022 phòng Giáo dục và Đào tạo thành phố Vinh, tỉnh Nghệ An.
Đề học sinh giỏi huyện Toán 7 năm 2021 - 2022 phòng GDĐT Ân Thi - Hưng Yên
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 7 đề thi chọn học sinh giỏi cấp huyện môn Toán 7 năm học 2021 – 2022 phòng Giáo dục và Đào tạo huyện Ân Thi, tỉnh Hưng Yên.
Đề Olympic Toán 7 năm 2021 - 2022 phòng GDĐT Kinh Môn - Hải Dương
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 7 đề giao lưu Olympic cấp thị xã môn Toán 7 năm học 2021 – 2022 phòng Giáo dục và Đào tạo UBND thị xã Kinh Môn, tỉnh Hải Dương. Trích dẫn đề Olympic Toán 7 năm 2021 – 2022 phòng GD&ĐT Kinh Môn – Hải Dương : + Tìm các số nguyên x và y biết: x + xy + y = 2. + Cho các số nguyên dương a b c d thoả mãn a2 + b2 + c2 + d2 chia hết cho 2. Chứng minh rằng: a + b + c + d là hợp số. + Cho tam giác ABC nhọn có AB < AC < BC, O là giao điểm ba tia phân giác các góc trong của tam giác. Kẻ OH vuông góc AC tại H, OI vuông góc BC tại I. 1) Chứng minh CHI cân. 2) Trên đoạn IC lấy K sao cho IK = AH , gọi M là giao điểm của AK và HI . Chứng minh M là trung điểm của AK. 3) Chứng minh B, O, M thẳng hàng.