Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Các dạng toán phương trình mũ và phương trình logarit thường gặp trong kỳ thi THPTQG

Bài toán trắc nghiệm phương trình mũ và phương trình logarit là bài toán được bắt gặp nhiều trong các đề thi THPT Quốc gia môn Toán, với nhiều dạng bài và độ khó từ mức cơ bản đến nâng cao. Để giúp các em học sinh khối 12 có thêm tài liệu tự học chủ đề phương trình mũ và phương trình logarit (Giải tích 12 chương 2), xa hơn là ôn tập chuẩn bị cho kỳ thi THPT Quốc gia môn Toán, thầy Nguyễn Bảo Vương đã tổng hợp các câu hỏi và bài tập trắc nghiệm phương trình mũ và phương trình logarit từ các đề thi thử THPT Quốc gia môn Toán, đề tham khảo – đề minh họa – đề thi chính thức THPT Quốc gia môn Toán của Bộ Giáo dục và Đào tạo. Tài liệu gồm 99 trang bao gồm 180 câu hỏi và bài tập trắc nghiệm phương trình mũ và phương trình logarit có đáp án và lời giải chi tiết. Mục lục tài liệu các dạng toán phương trình mũ và phương trình logarit thường gặp trong kỳ thi THPTQG: PHẦN A . CÂU HỎI Dạng 1 . Phương trình logarit (Trang 2). + Dạng 1.1 Phương trình logarit cơ bản (Trang 2). + Dạng 1.2 Biến đổi đưa về phương trình logarit cơ bản (Trang 4). + Dạng 1.3 Giải và biện luận phương trình logarit bằng phương pháp đưa về cùng cơ số (Trang 6). + Dạng 1.3.1 Phương trình logarit không chứa tham số (Trang 6). + Dạng 1.3.2 Phương trình logarit chứa tham số (Trang 7). + Dạng 1.4 Giải và biện luận phương trình logarit bằng phương pháp đặt ẩn phụ (Trang 7). + Dạng 1.4.1 Phương trình logarit không chứa tham số (Trang 7). + Dạng 1.4.2 Phương trình logarit chứa tham số và dùng định lý Vi-et để biện luận (Trang 8). + Dạng 1.4.3 Phương trình logarit chứa tham số và dùng phương pháp cô lập m để biện luận (Trang 9). + Dạng 1.5 Giải và biện luận phương trình logarit chứa tham số bằng phương pháp cô lập tham số (Trang 10). + Dạng 1.6 Giải và biện luận phương trình logarit bằng phương pháp hàm số (Trang 10). + Dạng 1.7 Giải và biện luận phương trình logarit bằng phương pháp khác (Trang 10). Dạng 2 . Phương trình mũ (Trang 11). + Dạng 2.1 Phương trình mũ cơ bản (Trang 11). + Dạng 2.2 Giải và biện luận phương trình mũ bằng phương pháp đặt ẩn phụ (Trang 13). + Dạng 2.2.1 Phương trình mũ không chứa tham số (Trang 13). + Dạng 2.2.2 Phương trình mũ chứa tham số và dùng định lý Vi-et để biện luận (Trang 15). + Dạng 2.2.3 Phương trình mũ chứa tham số và dùng phương pháp cô lập m để biện luận (Trang 17). + Dạng 2.3 Giải và biện luận phương trình mũ bằng phương pháp logarit hóa (Trang 18). + Dạng 2.4 Giải và biện luận phương trình mũ bằng một số phương pháp khác (Trang 19). + Dạng 2.5 Phương pháp hàm số (Trang 19). Dạng 3 . Phương trình kết hợp của mũ và logarit (Trang 19). + Dạng 3.1 Giải và biện luận bằng phương pháp đặt ẩn phụ (Trang 19). + Dạng 3.2 Giải và biện luận bằng phương pháp cô lập m (Trang 20). + Dạng 3.3 Giải và biện luận bằng phương pháp hàm số (Trang 21). [ads] PHẦN B . LỜI GIẢI THAM KHẢO Dạng 1 . Phương trình logarit (Trang 21). + Dạng 1.1 Phương trình logarit cơ bản (Trang 21). + Dạng 1.2 Biến đổi đưa về phương trình logarit cơ bản (Trang 27). + Dạng 1.3 Giải và biện luận phương trình logarit bằng phương pháp đưa về cùng cơ số  (Trang 32). + Dạng 1.3.1 Phương trình logarit không chứa tham số (Trang 32). + Dạng 1.3.2 Phương trình logarit chứa tham số (Trang 35). + Dạng 1.4 Giải và biện luận phương trình logarit bằng phương pháp đặt ẩn phụ (Trang 41). + Dạng 1.4.1 Phương trình logarit không chứa tham số  (Trang 41). + Dạng 1.4.2 Phương trình logarit chứa tham số và dùng định lý Vi-et để biện luận (Trang 43). + Dạng 1.4.3 Phương trình logarit chứa tham số và dùng phương pháp cô lập m để biện luận (Trang 46). + Dạng 1.5 Giải và biện luận phương trình logarit chứa tham số bằng phương pháp cô lập tham số (Trang 50). + Dạng 1.6 Giải và biện luận phương trình logarit bằng phương pháp hàm số (Trang 52). + Dạng 1.7 Giải và biện luận phương trình logarit bằng phương pháp khác (Trang 53). Dạng 2 . Phương trình mũ (Trang 57). + Dạng 2.1 Phương trình mũ cơ bản (Trang 57). + Dạng 2.2 Giải và biện luận phương trình mũ bằng phương pháp đặt ẩn phụ (Trang 62). + Dạng 2.2.1 Phương trình mũ không chứa tham số (Trang 62). + Dạng 2.2.2 Phương trình mũ chứa tham số và dùng định lý Vi-et để biện luận (Trang 69). + Dạng 2.2.3 Phương trình mũ chứa tham số và dùng phương pháp cô lập m để biện luận (Trang 79). + Dạng 2.3 Giải và biện luận phương trình mũ bằng phương pháp logarit hóa (Trang 84). + Dạng 2.4 Giải và biện luận phương trình mũ bằng một số phương pháp khác (Trang 85). + Dạng 2.5 Phương pháp hàm số (Trang 87). Dạng 3 . Phương trình kết hợp của mũ và logarit (Trang 88). + Dạng 3.1 Giải và biện luận bằng phương pháp đặt ẩn phụ (Trang 88). + Dạng 3.2 Giải và biện luận bằng phương pháp cô lập m (Trang 91). + Dạng 3.3 Giải và biện luận bằng phương pháp hàm số (Trang 95).

Nguồn: toanmath.com

Đọc Sách

Toàn tập phương trình, bất phương trình, hệ phương trình mũ - logarit vận dụng cao
Tài liệu gồm 106 trang, được biên soạn bởi thầy giáo Lương Tuấn Đức (Giang Sơn), tổng hợp toàn tập phương trình, bất phương trình, hệ phương trình mũ – logarit vận dụng cao (phiên bản năm 2021) nằm trong hệ thống bài tập trắc nghiệm chuyên đề lũy thừa, mũ và logarit lớp 12 THPT. Vận dụng cao, phân loại phương trình, bất phương trình, hệ mũ – logarit: + Lớp bài toán PT – BPT – HPT mũ – logarit vận dụng cao p1. + Lớp bài toán PT – BPT – HPT mũ – logarit vận dụng cao p2. + Lớp bài toán PT – BPT – HPT mũ – logarit vận dụng cao p3. + Lớp bài toán PT – BPT – HPT mũ – logarit vận dụng cao p4. + Lớp bài toán PT – BPT – HPT mũ – logarit vận dụng cao p5. + Lớp bài toán PT – BPT – HPT mũ – logarit vận dụng cao p6. + Lớp bài toán PT – BPT – HPT mũ – logarit vận dụng cao p7. + Lớp bài toán PT – BPT – HPT mũ – logarit vận dụng cao p8. + Lớp bài toán PT – BPT – HPT mũ – logarit vận dụng cao p9. + Lớp bài toán PT – BPT – HPT mũ – logarit vận dụng cao p10. + Lớp bài toán PT – BPT – HPT mũ – logarit vận dụng cao p11. + Lớp bài toán PT – BPT – HPT mũ – logarit vận dụng cao p12. + Lớp bài toán PT – BPT – HPT mũ – logarit vận dụng cao p13. + Lớp bài toán PT – BPT – HPT mũ – logarit vận dụng cao p14. + Lớp bài toán PT – BPT – HPT mũ – logarit vận dụng cao p15. + Lớp bài toán PT – BPT – HPT mũ – logarit vận dụng cao p16. + Lớp bài toán PT – BPT – HPT mũ – logarit vận dụng cao p17. + Lớp bài toán PT – BPT – HPT mũ – logarit vận dụng cao p18. + Lớp bài toán PT – BPT – HPT mũ – logarit vận dụng cao p19. + Lớp bài toán PT – BPT – HPT mũ – logarit vận dụng cao p20. + Lớp bài toán PT – BPT – HPT mũ – logarit vận dụng cao p21. + Lớp bài toán PT – BPT – HPT mũ – logarit vận dụng cao p22. + Lớp bài toán PT – BPT – HPT mũ – logarit vận dụng cao p23. + Lớp bài toán PT – BPT – HPT mũ – logarit vận dụng cao p24. + Lớp bài toán PT – BPT – HPT mũ – logarit vận dụng cao p25. + Lớp bài toán PT – BPT – HPT mũ – logarit vận dụng cao p26. + Lớp bài toán PT – BPT – HPT mũ – logarit vận dụng cao p27. + Lớp bài toán PT – BPT – HPT mũ – logarit vận dụng cao p28. + Lớp bài toán PT – BPT – HPT mũ – logarit vận dụng cao p29. + Lớp bài toán PT – BPT – HPT mũ – logarit vận dụng cao p30. + Lớp bài toán PT – BPT – HPT mũ – logarit vận dụng cao p31. + Lớp bài toán PT – BPT – HPT mũ – logarit vận dụng cao p32. + Lớp bài toán PT – BPT – HPT mũ – logarit vận dụng cao p33. + Lớp bài toán PT – BPT – HPT mũ – logarit vận dụng cao p34. + Lớp bài toán PT – BPT – HPT mũ – logarit vận dụng cao p35. + Lớp bài toán PT – BPT – HPT mũ – logarit vận dụng cao p36. + Lớp bài toán PT – BPT – HPT mũ – logarit vận dụng cao p37. + Lớp bài toán PT – BPT – HPT mũ – logarit vận dụng cao p38. + Lớp bài toán PT – BPT – HPT mũ – logarit vận dụng cao p39. + Lớp bài toán PT – BPT – HPT mũ – logarit vận dụng cao p40. + Lớp bài toán PT – BPT – HPT mũ – logarit vận dụng cao p41. + Lớp bài toán PT – BPT – HPT mũ – logarit vận dụng cao p42. + Lớp bài toán PT – BPT – HPT mũ – logarit vận dụng cao p43. + Lớp bài toán PT – BPT – HPT mũ – logarit vận dụng cao p44. + Lớp bài toán PT – BPT – HPT mũ – logarit vận dụng cao p45. + Lớp bài toán PT – BPT – HPT mũ – logarit vận dụng cao p46. + Lớp bài toán PT – BPT – HPT mũ – logarit vận dụng cao p47. + Lớp bài toán PT – BPT – HPT mũ – logarit vận dụng cao p48. + Lớp bài toán PT – BPT – HPT mũ – logarit vận dụng cao p49. + Lớp bài toán PT – BPT – HPT mũ – logarit vận dụng cao p50. + Lớp bài toán PT – BPT – HPT mũ – logarit vận dụng cao p51. + Lớp bài toán PT – BPT – HPT mũ – logarit vận dụng cao p52. + Lớp bài toán PT – BPT – HPT mũ – logarit vận dụng cao p53. + Lớp bài toán PT – BPT – HPT mũ – logarit vận dụng cao p54. + Lớp bài toán PT – BPT – HPT mũ – logarit vận dụng cao p55.
Toàn tập cực trị mũ, logarit vận dụng cao
Tài liệu gồm 38 trang, được biên soạn bởi thầy giáo Lương Tuấn Đức (Giang Sơn), tổng hợp toàn tập cực trị mũ, logarit vận dụng cao (phiên bản năm 2021) nằm trong hệ thống bài tập trắc nghiệm chuyên đề lũy thừa, mũ và logarit lớp 12 THPT. Vận dụng cao cực trị siêu việt (mũ, logarit). + Cực trị siêu việt p1. + Cực trị siêu việt p2. + Cực trị siêu việt p3. + Cực trị siêu việt p4. + Cực trị siêu việt p5. + Cực trị siêu việt p6. + Cực trị siêu việt p7. + Cực trị siêu việt p8. + Cực trị siêu việt p9. + Cực trị siêu việt p10. + Cực trị siêu việt p11. + Cực trị siêu việt p12. + Cực trị siêu việt p13. + Cực trị siêu việt p14. + Cực trị siêu việt p15. + Cực trị siêu việt p16. + Cực trị siêu việt p17. + Cực trị siêu việt p18. + Cực trị siêu việt p19.
Toàn tập lũy thừa, mũ và logarit cơ bản
Tài liệu gồm 96 trang, được biên soạn bởi thầy giáo Lương Tuấn Đức, tổng hợp toàn tập lũy thừa, mũ và logarit cơ bản (phiên bản năm 2021) nằm trong hệ thống bài tập trắc nghiệm chuyên đề lũy thừa, mũ và logarit lớp 12 THPT. Cơ bản hàm số lũy thừa. + Cơ bản hàm số lũy thừa – p1. + Cơ bản hàm số lũy thừa – p2. + Cơ bản hàm số lũy thừa – p3. + Cơ bản hàm số lũy thừa – p4. + Cơ bản hàm số lũy thừa – p5. + Cơ bản hàm số lũy thừa – p6. + Cơ bản hàm số lũy thừa – p7. Cơ bản hàm số mũ. + Cơ bản hàm số mũ – p1. + Cơ bản hàm số mũ – p2. + Cơ bản hàm số mũ – p3. + Cơ bản hàm số mũ – p4. + Cơ bản hàm số mũ – p5. + Cơ bản hàm số mũ – p6. + Cơ bản hàm số mũ – p7. Cơ bản hàm số logarit. + Cơ bản hàm số logarit – p1. + Cơ bản hàm số logarit – p2. + Cơ bản hàm số logarit – p3. + Cơ bản hàm số logarit – p4. + Cơ bản hàm số logarit – p5. + Cơ bản hàm số logarit – p6. + Cơ bản hàm số logarit – p7. Cơ bản phương trình, bất phương trình mũ. + Cơ bản phương trình, bất phương trình mũ – p1. + Cơ bản phương trình, bất phương trình mũ – p2. + Cơ bản phương trình, bất phương trình mũ – p3. + Cơ bản phương trình, bất phương trình mũ – p4. + Cơ bản phương trình, bất phương trình mũ – p5. + Cơ bản phương trình, bất phương trình mũ – p6. + Cơ bản phương trình, bất phương trình mũ – p7. + Cơ bản phương trình, bất phương trình mũ – p8. + Cơ bản phương trình, bất phương trình mũ – p9. + Cơ bản phương trình, bất phương trình mũ – p10. Cơ bản phương trình, bất phương trình logarit. + Cơ bản phương trình, bất phương trình logarit – p1. + Cơ bản phương trình, bất phương trình logarit – p2. + Cơ bản phương trình, bất phương trình logarit – p3. + Cơ bản phương trình, bất phương trình logarit – p4. + Cơ bản phương trình, bất phương trình logarit – p5. + Cơ bản phương trình, bất phương trình logarit – p6. + Cơ bản phương trình, bất phương trình logarit – p7. + Cơ bản phương trình, bất phương trình logarit – p8. + Cơ bản phương trình, bất phương trình logarit – p9. Bài tập tổng hợp lũy thừa, mũ, logarit. + Bài tập tổng hợp – p1. + Bài tập tổng hợp – p2 . + Bài tập tổng hợp – p3 . + Bài tập tổng hợp – p4 . + Bài tập tổng hợp – p5 . + Bài tập tổng hợp – p6 . + Bài tập tổng hợp – p7 . + Bài tập tổng hợp – p8 . + Bài tập tổng hợp – p9 . + Bài tập tổng hợp – p10 . + Bài tập tổng hợp – p11 . + Bài tập tổng hợp – p12 . + Bài tập tổng hợp – p13 . + Bài tập tổng hợp – p14 . + Bài tập tổng hợp – p15 . + Bài tập tổng hợp – p16 . + Bài tập tổng hợp – p17 . + Bài tập tổng hợp – p18 . + Bài tập tổng hợp – p19 . + Bài tập tổng hợp – p20.
32 bài toán phương trình và bất phương trình mũ - logarit chứa tham số
Tài liệu gồm 25 trang, được biên soạn bởi thầy giáo Phạm Văn Nghiệp, tuyển chọn 32 bài toán phương trình và bất phương trình mũ – logarit chứa tham số có đáp án và lời giải chi tiết; tài liệu hỗ trợ học sinh lớp 12 trong quá trình học thêm chương trình Toán 12 phần Giải tích chương 2: Hàm số lũy thừa, hàm số mũ và hàm số logarit. Trích dẫn tài liệu 32 bài toán phương trình và bất phương trình mũ – logarit chứa tham số: + Cho phương trình 4 10 2 16 3 0 x x x m với m là tham số thực. Có bao nhiêu số nguyên m để phương trình có hai nghiệm thực phân biệt? + Gọi S là tập hợp nghiệm nguyên của bất phương trình 2 2 2 2 2 log 2 2 log 2 log x mx mx x. Có bao nhiêu giá trị nguyên của tham số m để tập hợp S có đúng 8 phần tử? + Cho hàm số bậc 4 có đồ thị như hình vẽ. Có bao nhiêu giá trị nguyên của tham số m và m 2021 2021 để phương trình 3 2 log f x x f x mx mx f x mx có hai nghiệm phân biệt dương? + Có bao nhiêu giá trị nguyên của tham số a thuộc 20 20 để bất phương trình 2 3 3 3 log log 1 0 x a x a có không quá 20 nghiệm nguyên? + Cho phương trình 3 2020 log 2021 x a x với a là số thực dương. Biết tích các nghiệm của phương trình là 32. Mệnh đề nào sau đây là đúng?