Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Các dạng toán phương trình mũ và phương trình logarit thường gặp trong kỳ thi THPTQG

Bài toán trắc nghiệm phương trình mũ và phương trình logarit là bài toán được bắt gặp nhiều trong các đề thi THPT Quốc gia môn Toán, với nhiều dạng bài và độ khó từ mức cơ bản đến nâng cao. Để giúp các em học sinh khối 12 có thêm tài liệu tự học chủ đề phương trình mũ và phương trình logarit (Giải tích 12 chương 2), xa hơn là ôn tập chuẩn bị cho kỳ thi THPT Quốc gia môn Toán, thầy Nguyễn Bảo Vương đã tổng hợp các câu hỏi và bài tập trắc nghiệm phương trình mũ và phương trình logarit từ các đề thi thử THPT Quốc gia môn Toán, đề tham khảo – đề minh họa – đề thi chính thức THPT Quốc gia môn Toán của Bộ Giáo dục và Đào tạo. Tài liệu gồm 99 trang bao gồm 180 câu hỏi và bài tập trắc nghiệm phương trình mũ và phương trình logarit có đáp án và lời giải chi tiết. Mục lục tài liệu các dạng toán phương trình mũ và phương trình logarit thường gặp trong kỳ thi THPTQG: PHẦN A . CÂU HỎI Dạng 1 . Phương trình logarit (Trang 2). + Dạng 1.1 Phương trình logarit cơ bản (Trang 2). + Dạng 1.2 Biến đổi đưa về phương trình logarit cơ bản (Trang 4). + Dạng 1.3 Giải và biện luận phương trình logarit bằng phương pháp đưa về cùng cơ số (Trang 6). + Dạng 1.3.1 Phương trình logarit không chứa tham số (Trang 6). + Dạng 1.3.2 Phương trình logarit chứa tham số (Trang 7). + Dạng 1.4 Giải và biện luận phương trình logarit bằng phương pháp đặt ẩn phụ (Trang 7). + Dạng 1.4.1 Phương trình logarit không chứa tham số (Trang 7). + Dạng 1.4.2 Phương trình logarit chứa tham số và dùng định lý Vi-et để biện luận (Trang 8). + Dạng 1.4.3 Phương trình logarit chứa tham số và dùng phương pháp cô lập m để biện luận (Trang 9). + Dạng 1.5 Giải và biện luận phương trình logarit chứa tham số bằng phương pháp cô lập tham số (Trang 10). + Dạng 1.6 Giải và biện luận phương trình logarit bằng phương pháp hàm số (Trang 10). + Dạng 1.7 Giải và biện luận phương trình logarit bằng phương pháp khác (Trang 10). Dạng 2 . Phương trình mũ (Trang 11). + Dạng 2.1 Phương trình mũ cơ bản (Trang 11). + Dạng 2.2 Giải và biện luận phương trình mũ bằng phương pháp đặt ẩn phụ (Trang 13). + Dạng 2.2.1 Phương trình mũ không chứa tham số (Trang 13). + Dạng 2.2.2 Phương trình mũ chứa tham số và dùng định lý Vi-et để biện luận (Trang 15). + Dạng 2.2.3 Phương trình mũ chứa tham số và dùng phương pháp cô lập m để biện luận (Trang 17). + Dạng 2.3 Giải và biện luận phương trình mũ bằng phương pháp logarit hóa (Trang 18). + Dạng 2.4 Giải và biện luận phương trình mũ bằng một số phương pháp khác (Trang 19). + Dạng 2.5 Phương pháp hàm số (Trang 19). Dạng 3 . Phương trình kết hợp của mũ và logarit (Trang 19). + Dạng 3.1 Giải và biện luận bằng phương pháp đặt ẩn phụ (Trang 19). + Dạng 3.2 Giải và biện luận bằng phương pháp cô lập m (Trang 20). + Dạng 3.3 Giải và biện luận bằng phương pháp hàm số (Trang 21). [ads] PHẦN B . LỜI GIẢI THAM KHẢO Dạng 1 . Phương trình logarit (Trang 21). + Dạng 1.1 Phương trình logarit cơ bản (Trang 21). + Dạng 1.2 Biến đổi đưa về phương trình logarit cơ bản (Trang 27). + Dạng 1.3 Giải và biện luận phương trình logarit bằng phương pháp đưa về cùng cơ số  (Trang 32). + Dạng 1.3.1 Phương trình logarit không chứa tham số (Trang 32). + Dạng 1.3.2 Phương trình logarit chứa tham số (Trang 35). + Dạng 1.4 Giải và biện luận phương trình logarit bằng phương pháp đặt ẩn phụ (Trang 41). + Dạng 1.4.1 Phương trình logarit không chứa tham số  (Trang 41). + Dạng 1.4.2 Phương trình logarit chứa tham số và dùng định lý Vi-et để biện luận (Trang 43). + Dạng 1.4.3 Phương trình logarit chứa tham số và dùng phương pháp cô lập m để biện luận (Trang 46). + Dạng 1.5 Giải và biện luận phương trình logarit chứa tham số bằng phương pháp cô lập tham số (Trang 50). + Dạng 1.6 Giải và biện luận phương trình logarit bằng phương pháp hàm số (Trang 52). + Dạng 1.7 Giải và biện luận phương trình logarit bằng phương pháp khác (Trang 53). Dạng 2 . Phương trình mũ (Trang 57). + Dạng 2.1 Phương trình mũ cơ bản (Trang 57). + Dạng 2.2 Giải và biện luận phương trình mũ bằng phương pháp đặt ẩn phụ (Trang 62). + Dạng 2.2.1 Phương trình mũ không chứa tham số (Trang 62). + Dạng 2.2.2 Phương trình mũ chứa tham số và dùng định lý Vi-et để biện luận (Trang 69). + Dạng 2.2.3 Phương trình mũ chứa tham số và dùng phương pháp cô lập m để biện luận (Trang 79). + Dạng 2.3 Giải và biện luận phương trình mũ bằng phương pháp logarit hóa (Trang 84). + Dạng 2.4 Giải và biện luận phương trình mũ bằng một số phương pháp khác (Trang 85). + Dạng 2.5 Phương pháp hàm số (Trang 87). Dạng 3 . Phương trình kết hợp của mũ và logarit (Trang 88). + Dạng 3.1 Giải và biện luận bằng phương pháp đặt ẩn phụ (Trang 88). + Dạng 3.2 Giải và biện luận bằng phương pháp cô lập m (Trang 91). + Dạng 3.3 Giải và biện luận bằng phương pháp hàm số (Trang 95).

Nguồn: toanmath.com

Đọc Sách

Trắc nghiệm lũy thừa, mũ và logarit trong các đề thi thử Toán 2018
giới thiệu đến bạn đọc tài liệu trắc nghiệm lũy thừa, mũ và logarit trong các đề thi thử Toán 2018, tài liệu gồm 502 trang tuyển chọn các câu hỏi và bài toán trắc nghiệm chủ đề lũy thừa, mũ và logarit có lời giải chi tiết trong các đề thi thử môn Toán năm 2018, các câu hỏi và bài tập được sắp xếp theo độ khó tăng dần và phân loại thành các mức độ nhận thức, phù hợp với nhiều đối tượng học sinh. Trích dẫn tài liệu trắc nghiệm lũy thừa, mũ và logarit trong các đề thi thử Toán 2018 : + (THPT Kim Liên – Hà Nội năm 2017 – 2018) Cho hàm số f(x) = (x^2 – 2x + 2)e^x. Chọn mệnh đề sai? A. Hàm số có 1 điểm cực trị. B. Hàm số đồng biến trên R. C. Hàm số không có giá trị lớn nhất và giá trị nhỏ nhất. D. f(-1) = 5/e. [ads] + (Đề tham khảo BGD năm 2017 – 2018) Có bao nhiêu giá trị nguyên dương của tham số m để phương trình 16^x – 2.12^x + (m – 2)9^x = 0 có nghiệm dương? + (THPT Lục Ngạn – Bắc Ninh – lần 1 năm 2017 – 2018) Một cô giáo dạy Văn gửi 200 triệu đồng loại kỳ hạn sáu tháng vào một ngân hàng với lãi suất 69/20% một kì. Hỏi sau 6 năm 9 tháng cô giáo nhận được số tiền cả gốc và lãi là bao nhiêu biết cô giáo không rút lãi ở tất cả các kì hạn trước và nếu rút trước ngân hàng sẽ trả lãi suất theo loại lãi suất không kì hạn 0,002% trên ngày?
Tuyển tập mũ và logarit trong các đề thi thử môn Toán 2018 có đáp án - Nguyễn Nhanh Tiến (Phần 1)
Tài liệu gồm 14 trang tuyển chọn 106 bài toán chủ đề mũ và logarit trong các đề thi thử môn Toán 2018, đề khảo sát chất lượng giữa HK1 Toán 12 và một số bài toán chọn lọc, tài liệu được tổng hợp và biên soạn bởi thầy Nguyễn Hữu Nhanh Tiến, các bài tập đều có đáp án. Trích dẫn tài liệu : + (Toán học tuổi trẻ Tháng 10 2017). Cho hai hàm số f(x) = log2 x, g(x) = 2^x. Xét các mệnh đề sau: (I). Đồ thị hai hàm số đối xứng nhau qua đường thẳng y = x (II). Tập xác định của hai hàm số trên là R (III). Đồ thị hai hàm số cắt nhau tại đúng 1 điểm (IV). Hai hàm số đều đồng biến trên tập xác định của nó Có bao nhiêu mệnh đề đúng trong các mệnh đề trên? A. 2   B. 3   C. 1   D. 4 [ads] + (Khảo sát giữa kì 1 Chuyên ĐH Vinh). Cho α là một số thực dương khác 1. Có bao nhiêu mệnh đề đúng trong các mệnh đề sau: 1. Hàm số y = logα x có tập xác định là D = (0; +∞) 2. Hàm số y = logα x là hàm đơn điệu trên khoảng (0; +∞) 3. Đồ thị hàm số y = logα x và đồ thị hàm số y = α^x đối xứng nhau qua đường thẳng y = x 4. Đồ thị hàm số y = logα x nhận Ox là một tiệm cận A. 4   B. 1   C. 3   D. 2 + (Giữa học kì 1 lớp 12 Chuyên Lê Hồng Phong – Nam Định). Cho hai hàm số y = f(x) = loga x và y = g(x) = a^x. Xét các mệnh đề sau: I. Đồ thị hàm số f(x) và g(x) luôn cắt nhau tại một điểm II. Hàm số f(x) + f(x) đồng biến khi a > 1, nghịch biến khi 0 < a < 1 III. Đồ thị hàm số f(x) nhận trục Oy làm tiệm cận IV. Chỉ có đồ thị hàm số f(x) có tiệm cận Số mệnh đề đúng là: A. 1   B. 2   C. 3   D. 4 Lưu ý :  Bạn đọc có thể tìm kiếm lời giải chi tiết bài tập mũ và logarit có trong tài liệu này tại chuyên mục đề thi thử môn Toán.
Hướng dẫn giải các bài toán về hàm số lũy thừa, mũ và logarit trong đề thi THPT QG 2017 - Dương Trác Việt
Tài liệu gồm 16 trang cung cấp một số cách giải quyết những bài tập về hàm số lũy thừa, mũ và logarit trong đề thi THPT Quốc Gia 2017 môn Toán. Bài viết ưu tiên đề cập loạt kỹ thuật giải nhanh theo định hướng trắc nghiệm, các câu hỏi vận dụng cao sẽ được trình bày chi tiết theo lối tự luận truyền thống.
Phân loại câu hỏi chuyên đề khảo sát hàm số và mũ - logarit - Lê Minh Cường
Tài liệu gồm 90 trang với 707 bài toán trắc nghiệm có đáp án thuộc các chuyên đề khảo sát hàm số và hàm số lũy thừa – mũ – logarit. Khảo sát hàm số 1.1 Đơn điệu 1.2 Cực trị 1.3 Min-Max 1.4 Tiệm cận 1.5 Đồ thị – Tương giao 1.6 Tiếp tuyến [ads] Hàm số lũy thừa – mũ – lôgarit 2.1 Hàm số lũy thừa 2.2 Công thức lôgarit 2.3 Hàm số mũ – lôgarit 2.4 Phương trình mũ – lôgarit 2.5 Bất phương trình mũ – lôgarit Các bài toán được phân loại theo mức độ nhận biết, thông hiểu, vận dụng thấp và vận dụng cao.