Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Kĩ năng sử dụng máy tính Casio trong giải toán - Bùi Thế Việt

Trong các dụng cụ học tập được phép mang vào phòng thi trong các kỳ thi đại học, kỳ thi THPT Quốc Gia thì máy tính cầm tay là dụng cụ không thể thiếu giúp chúng ta tính toán nhanh chóng. Tuy nhiên, máy tính cầm tay sẽ là trợ thủ đắc lực để giải toán, đặc biệt là giải Phương Trình, Hệ Phương Trình, Bất Phương Trình … hay kể cả là Bất Đẳng Thức. Mình (tác giả Bùi Thế Việt) là một người rất đam mê với những kỹ năng, thủ thuật sử dụng máy tính cầm tay trong giải toán. Mình đã áp dụng nó vào đề thi THPT Quốc Gia 2015. Chỉ trong 3 – 5 phút, mình đã đưa ra lời giải chính xác cho câu Phương Trình Vô Tỷ và cũng chỉ gần 1 giờ, mình đã hoàn thành xong bài làm với điểm số tuyệt đối, là 1 trong 85/671.149 người được điểm tối đa. Vậy sử dụng sao cho hiệu quả? Hãy đến với chuyên đề Kỹ Năng Sử Dụng CASIO Trong Giải Toán. Chuyên đề này chưa phải là tất cả những Thủ Thuật mà mình đưa tới cho bạn đọc. Tuy không nhiều nhưng các thủ thuật dưới đây sẽ mang tới sự kỳ diệu mà chiếc máy tính CASIO có thể mang lại. [ads] Chuyên đề giới thiệu 8 kĩ năng sử dụng máy tính CASIO trong việc giải toán: 1. Thủ thuật sử dụng CASIO để rút gọn biểu thức. 2. Thủ thuật sử dụng CASIO để giải phương trình bậc 4. 3. Thủ thuật sử dụng CASIO để tìm nghiệm phương trình. 4. Thủ thuật sử dụng CASIO để phân tích đa thức thành nhân tử một ẩn. 5. Thủ thuật sử dụng CASIO để phân tích đa thức thành nhân tử hai ẩn. 6. Thủ thuật sử dụng CASIO để giải hệ phương trình. 7. Thủ thuật sử dụng CASIO để tích nguyên hàm, tích phân. 8. Thủ thuật sử dụng CASIO để giải bất đẳng thức.

Nguồn: toanmath.com

Đọc Sách

Tài liệu ôn tập lý thuyết thi tốt nghiệp Trung học Phổ thông môn Toán
Tài liệu gồm 21 trang, được biên soạn bởi thầy giáo Huỳnh Phú Sĩ, hướng dẫn học sinh lớp 12 ôn tập lý thuyết để chuẩn bị cho kỳ thi tốt nghiệp Trung học Phổ thông môn Toán. MỤC LỤC : Chủ đề 1 . Khảo sát sự biến thiên và đồ thị của hàm số 2. 1. Sự biến thiên của hàm số 2. 2. Cực trị của hàm số 2. 3. Giá trị lớn nhất và giá trị nhỏ nhất của hàm số 3. 4. Đường tiệm cận 3. 5. Khảo sát đồ thị hàm số 3. Chủ đề 2 . Lũy thừa – Mũ – Logarit 6. 1. Lũy thừa 6. 2. Hàm số lũy thừa 7. 3. Logarit 7. 4. Hàm số mũ và hàm số logarit 8. 5. Phương trình mũ và phương trình logarit 9. 6. Bất phương trình mũ và bất phương trình logarit 9. Chủ đề 3 . Nguyên hàm – Tích phân và ứng dụng 10. 1. Nguyên hàm 10. 2. Tích phân 10. 3. Ứng dụng của tích phân trong hình học 11. Chủ đề 4 . Số phức 12. 1. Số phức 12. 2. Phép cộng, trừ, nhân, chia số phức 12. Chủ đề 5 . Khối đa diện 13. 1. Khái niệm về hình đa diện và khối đa diện 13. 2. Khối đa diện đều 13. 3. Thể tích khối đa diện 13. Chủ đề 6 . Khối tròn xoay 14. 1. Hình nón và hình trụ 14. 2. Hình cầu 14. Chủ đề 7 . Phương pháp tọa độ trong không gian 16. 1. Hệ tọa độ Oxyz 16. 2. Phương trình mặt cầu 17. 3. Phương trình mặt phẳng 17. 4. Phương trình đường thẳng 18. Chủ đề 8 . Dãy số – Quy tắc đếm – Xác suất – Góc – Khoảng cách 19. 1. Dãy số 19. 2. Quy tắc đếm 19. 3. Xác suất 20. 4. Góc và Khoảng cách trong không gian.
Làm ngược và loại trừ trong giải toán trắc nghiệm - Trần Tuấn Anh
Tài liệu gồm 17 trang, được biên soạn bởi thầy giáo Trần Tuấn Anh, hướng dẫn sử dụng phương pháp làm ngược và loại trừ trong giải toán trắc nghiệm. 1. “Làm ngược”: Từ đáp án, kiểm tra các điều kiện của bài toán để xác thực tính đúng – sai: Ta cần chú ý rằng, các đáp án cũng chính là giả thiết của bài toán, gợi ý giúp ta giải quyết bài toán trắc nghiệm. 2. “Loại trừ”: Từ giả thiết, bóc tách ra các điều kiện độc lập, kiểm tra các đáp án vi phạm điều kiện để loại trừ. Đối với câu hỏi có chọn lựa phương án đúng, đáp án nào vi phạm điều kiện bài toán, sẽ bị loại trừ. Nếu câu hỏi trắc nghiệm có bốn đáp án, mà trong đó có một đáp án đúng, chúng ta xác định được ba trong bốn đáp án đã cho là sai thì đáp án đúng là đáp án còn lại. Xem thêm : + Sử dụng chủ yếu suy luận trong giải toán trắc nghiệm – Trần Tuấn Anh + Phương pháp chọn đại diện giải toán trắc nghiệm – Trần Tuấn Anh
Tổng hợp công thức ôn thi tốt nghiệp THPT môn Toán - Lê Quốc Bảo
Tài liệu gồm 19 trang, được biên soạn bởi thầy giáo Lê Quốc Bảo, tổng hợp công thức ôn thi tốt nghiệp THPT môn Toán. Bảng đạo hàm cơ bản. Bảng nguyên hàm cơ bản. Phần I . ĐẠI SỐ VÀ GIẢI TÍCH. I. Tổ hợp – Xác suất. II. Cấp số cộng, cấp số nhân. IV. Ứng dụng đạo hàm để khảo sát và vẽ đồ thị hàm số. V. Hàm số lũy thừa, hàm số mũ và hàm số lôgarit. VI. Ứng dụng của tích phân. VII. Số phức. Phần II . HÌNH HỌC. VIII. Hình chóp đều. IX. Khối đa diện đều. X. Khối nón, khối trụ và khối cầu. XI. Không gian Oxyz. XII. Phương trình đường thẳng.
23 chuyên đề nền tảng 7+ ôn tập kỳ thi TN THPT 2023 môn Toán
Tài liệu gồm 257 trang, được biên soạn bởi Trung Tâm Kỹ Năng Cộng, tuyển tập 23 chuyên đề nền tảng 7+ ôn tập kỳ thi tốt nghiệp THPT năm 2023 môn Toán, có đáp án và lời giải chi tiết. MỤC LỤC : KHẢO SÁT HÀM SỐ – SỰ BIẾN THIÊN – Trang 01. KHẢO SÁT HÀM SỐ – CỰC TRỊ – Trang 04. KHẢO SÁT HÀM SỐ – GTLN-GTNN – Trang 09. KHẢO SÁT HÀM SỐ – TIỆM CẬN – Trang 11. KHẢO SÁT HÀM SỐ – TƯƠNG GIAO – Trang 14. MŨ – LOGARITH – LŨY THỪA – Trang 16. MŨ – LOGARITH – HÀM SỐ – Trang 19. MŨ – LOGARITH – PHƯƠNG TRÌNH – Trang 23. MŨ – LOGARITH – BẤT PHƯƠNG TRÌNH – Trang 26. KHỐI ĐA DIỆN – Trang 30. KHỐI TRÒN XOAY – Trang 35. NGUYÊN HÀM – Trang 42. TÍCH PHÂN – Trang 47. ỨNG DỤNG TÍCH PHÂN – Trang 51. SỐ PHỨC – KHÁI NIỆM – Trang 56. SỐ PHỨC – ĐIỂM BIỂU DIỄN SỐ PHỨC – Trang 59. SỐ PHỨC – PHƯƠNG TRÌNH BẬC HAI – Trang 61. OXYZ – HỆ TRỤC TỌA ĐỘ – Trang 63. OXYZ – PHƯƠNG TRÌNH MẶT PHẲNG – Trang 67. OXYZ – PHƯƠNG TRÌNH ĐƯỜNG THẲNG – Trang 71. HHKG – GÓC – KHOẢNG CÁCH – Trang 78. CẤP SỐ – Trang 81. TỔ HỢP – XÁC SUẤT – Trang 83.